The Influence of the Depth of Grinding on the Condition of the Surface Layer of 20MnCr5 Steel Ground with the Minimum Quantity Lubrication (MQL) Method
Abstract
:1. Introduction
2. Experimental Tests
2.1. Vacuum Carburising with Single-Piece Flow Method and Heat Treatment
2.2. Grinding
2.3. Microhardness Measurement
2.4. Residual Stress Measurement with Roentgen Method
2.5. Surface Roughness Measurement
3. Results and Discussion
3.1. Microhardness
3.2. Residual Stresses
3.3. Surface Roughness
4. Conclusions
- For each of the three ae grinding depths, lower (more favourable) changes in microhardness compared to the microhardness of the material before grinding occur in the surface layer of samples ground with GF fed using MQL method.
- For both GF supply methods (WET and MQL), the microhardness distribution in the material of samples ground with the smallest grinding depth (0.01 mm) showed no significant differences with respect to the microhardness distribution in the material of these samples after vacuum carburising treatment.
- The vacuum carburising process carried out by the “single-piece flow” method enables favourable, i.e., compressive distribution of residual stresses to be obtained in the technological surface layer.
- In general, the grinding process with an alumina grinding wheel causes the residual stresses in the material to deteriorate in comparison with the sample material after vacuum carburising treatment and before grinding.
- The least unfavourable changes in residual stresses occur during grinding with the lowest grinding depth (0.01 mm), for which residual stresses remain within the range of favourable compressive stresses. For greater grinding depths (≥0.02 mm), the residual stresses move into the unfavourable area of tensile stresses. The above observations apply to both methods (WET and MQL) of supplying GF to the grinding zone.
- For each of the three ae grinding depths, lower surface roughness values are obtained after grinding with GF fed with MQL method.
- For each of the three grinding depths ae, the obtained values of 3D surface roughness parameters indicate that for both methods of feeding GF into the grinding zone (WET and MQL), random anisotropic surfaces with good abrasion resistance, i.e., with wide peaks and narrow valleys, are obtained.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
ECD | Effective case depth |
GF | Grinding fluid |
HPGQ | High-pressure gas quenching |
HV | Hardness in the Vickers scale |
LPC | Low pressure carburising |
MQL | Minimum quantity lubrication |
PSD | Power spectral density |
TCT | Thermochemical treatment |
WET | Flood method using water emulsion as coolant |
ae | Working engagement (depth of cut), mm |
ad | Dressing allowance, mm |
id | Number of dressing passes |
l | Evaluation width, mm |
lt | Tracing length, mm |
ln | Evaluation length, mm |
lr | Sampling length, mm |
ns | Grinding wheel rotational speed, rpm |
P | Supply air pressure (MQL method), MPa |
rtip | Stylus tip radius, μm |
Rp | Value of the highest peak of the profile, μm |
Rv | Value of depth of the lowest valley of the profile, μm |
Rz | Maximum height of the roughness profile, μm |
Sk | Core roughness depth, μm |
Spk | Reduced peak height, μm |
Ssk | Skewness, μm |
Str | Texture direction |
Sz | Maximum height of surface, μm |
Qd | Dresser weight, kt |
QMQL | MQL flow rate, mL/h |
QWET | Conventional GF flow rate, L/min |
vfd | Axial table feed speed during dressing, mm/min |
vs | Grinding wheel peripheral speed, m/s |
vsd | Grinding wheel peripheral speed during dressing, m/s |
vt | Tracing speed, mm/s |
vw | Workpiece peripheral speed, m/min |
λc | Long-wave profile filter, mm |
References
- Kruszyński, B.W.; Wójcik, R. Residual stress in grinding. J. Mater. Process. Technol. 2001, 109, 254–257. [Google Scholar] [CrossRef]
- Ding, W.; Zhang, L.; Li, Z.; Zhu, Y.; Su, H.; Xu, J. Review on grinding-induced residual stresses in metallic materials. Int. J. Adv. Manuf. Technol. 2017, 88, 2939–2968. [Google Scholar] [CrossRef]
- Marinescu, I.D.; Hitchiner, M.P.; Uhlmann, E.; Rowe, W.B.; Inasaki, I. Handbook of Machining with Grinding Wheels, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Grzesik, W.; Kruszyński, B.; Ruszaj, A. Surface integrity of machined surfaces. In Surface Integrity in Machining; Davim, J.P., Ed.; Springer: London, UK, 2010. [Google Scholar] [CrossRef]
- Korecki, M.; Wołowiec-Korecka, E.; Sut, M.; Brewka, A.; Stachurski, W.; Zgórniak, P. Precision case hardening by low pressure carburizing (LPC) for high volume production. J. Heat Treatm. Mater. 2017, 72, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Gräfen, W.; Edenhofer, B. New developments in thermo-chemical diffusion processes. Surf. Coat. Technol. 2005, 200, 1830–1836. [Google Scholar] [CrossRef]
- Kula, P.; Dybowski, K.; Wolowiec, E.; Pietrasik, R. “Boost-diffusion” vacuum carburizing—Process optimisation. Vacuum 2014, 99, 175–179. [Google Scholar] [CrossRef]
- Sawicki, J.; Kruszyński, B.; Wójcik, R. The influence of grinding conditions on the distribution of residual stress in the surface layer of 17CrNi6-6 steel after carburizing. Adv. Sci. Technol. Res. J. 2017, 11, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Webster, G.A. Role of residual stress in engineering applications. Mater. Sci. Forum 2000, 347–349, 1–11. [Google Scholar] [CrossRef]
- Sawicki, J.; Siedlaczek, P.; Staszczyk, A. Finite-element analysis of residual stresses generated under nitriding process: A three-dimensional model. Met. Sci. Heat Treat. 2018, 59, 799–804. [Google Scholar] [CrossRef]
- Sawicki, J.; Siedlaczek, P.; Staszczyk, A. Fatigue life predicting for nitrided steel–finite element analysis. Arch. Metall. Mater. 2018, 63, 917–923. [Google Scholar] [CrossRef]
- Rowe, W.B. Principles of Modern Grinding Technology, 2nd ed.; Elsevier: Oxfort, UK, 2014. [Google Scholar]
- Burakowski, T.; Wierzchoń, T. Surface Engineering of Metals: Principles, Equipment, Technology; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Krolczyk, G.M.; Maruda, R.W.; Nieslony, P.; Wieczorowski, M. Surface morphology analysis of Duplex Stainless Steel (DSS) in Clean Production using the Power Spectral Density. Measurement 2016, 94, 464–470. [Google Scholar] [CrossRef]
- Podulka, P. Comparisons of envelope morphological filtering methods and various regular algorithms for surface texture analysis. Metrol. Meas. Syst. 2020, 27, 243–263. [Google Scholar] [CrossRef]
- Troß, N.; Brimmers, J.; Bergs, T. Tool wear in dry gear hobbing of 20MnCr5 case-hardening steel, 42CrMo4 tempered steel and EN-GJS-700-2 cast iron. Wear 2021, 476, 203737. [Google Scholar] [CrossRef]
- Kharka, V.; Jain, N.K.; Gupta, K. Sustainability and performance assessment of gear hobbing under different lubrication environments for manufacturing of 20MnCr5 spur gears. Sustain. Mater. Technol. 2022, 31, e00388. [Google Scholar] [CrossRef]
- Arsene, B.; Pasca Pascariu, G.; Sarbu, F.A.; Barbu, M.; Calefariu, G. Green manufacturing by using organic cooling-lubrication fluids. IOP Conf. Ser. Mater. Sci. Eng. 2018, 399, 012001. [Google Scholar] [CrossRef]
- Silva, L.R.; Corrêa, E.C.S.; Brandão, J.R.; de Ávila., R.F. Environmentally friendly manufacturing: Behavior analysis of minimum quantity of lubricant-MQL in grinding process. J. Clean. Prod. 2020, 256, 103287. [Google Scholar] [CrossRef]
- Lawal, S.; Choudhury, I.; Nukman, Y. A critical assessment of lubrication techniques in machining processes: A case for minimum quantity lubrication using vegetable oil-based lubricant. J. Clean. Prod. 2013, 41, 210–221. [Google Scholar] [CrossRef]
- Srikant, R.R.; Rao, P.N. Use of vegetable-based cutting fluids for sustainable machining. In Sustainable Machining; Davim, J.P., Ed.; Springer Nature: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Sharma, V.S.; Singh, G.; Sørby, K. A review on minimum quantity lubrication for machining processes. Mater. Manuf. Process. 2015, 30, 935–953. [Google Scholar] [CrossRef]
- Stachurski, W.; Sawicki, J.; Wójcik, R.; Nadolny, K. Influence of application of hybrid MQL-CCA method of applying coolant during hob cutter sharpening on cutting blade surface condition. J. Clean. Prod. 2018, 171, 892–910. [Google Scholar] [CrossRef]
- Stachurski, W.; Sawicki, J.; Krupanek, K.; Nadolny, K. Application of numerical simulation to determine ability of air used in MQL method to clean grinding wheel active surface during sharpening of hob cutters. Int. J. Precis. Eng. Manuf. Green Technol. 2021, 8, 1095–1112. [Google Scholar] [CrossRef]
- Kananathan, J.; Samykano, M.; Sudhakar, K.; Subramaniam, S.R.; Selavamani, S.K.; Kumar, N.M.; Keng, N.W.; Kadirgama, K.; Hamzah, W.A.W.; Harun, W.S.W. Nanofluid as coolant for grinding process: An overview. IOP Conf. Ser. Mater. Sci. Eng. 2018, 342, 012078. [Google Scholar] [CrossRef]
- Madanchi, N.; Kurle, D.; Winter, M.; Thiede, S.; Herrmann, C. Energy efficient process chain: The impact of cutting fluid strategies. Procedia CIRP 2015, 29, 360–365. [Google Scholar] [CrossRef]
- Said, Z.; Gupta, M.; Hegab, H.; Arora, N.; Khan, A.M.; Jamil, M.; Bellos, E. A comprehensive review on minimum quantity lubrication (MQL) in machining process using nano-cutting fluids. Int. J. Adv. Manuf. Technol. 2019, 105, 2057–2086. [Google Scholar] [CrossRef]
- Stachurski, W.; Krupanek, K.; Januszewicz, B.; Rosik, R.; Wójcik, R. An effect of grinding on microhardness and residual stress in 20MnCr5 following single-piece flow low-pressure carburizing. J. Mach. Eng. 2018, 18, 73–85. [Google Scholar] [CrossRef]
- Zgórniak, P.; Wołowiec-Korecka, E.; Januszewicz, B.; Sikora, M.; Rosik, R. The influence of grinding wheel type on microhardness and residual stresses in vacuum-carburised 20MnCr5 steel using the single-piece flow method. IOP Conf. Ser. Mater. Sci. Eng. 2020, 743, 012049. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.K.; Khan, A.M.; Song, Q.; Zhanqiang, L.; Khalid, Q.S.; Jamil, M.; Kuntoğlu, M.; Usca, Ü.A.; Sarikaya, M.; Pimenow, D.Y. A review on conventional and advanced minimum quantity lubrication approaches on performance measures of grinding process. Int. J. Adv. Manuf. Technol. 2021, 117, 729–750. [Google Scholar] [CrossRef]
- Khan, A.M.; Jamil, M.; Mia, M.; Pimenow, D.Y.; Gasiyarov, V.R.; Gupta, M.K.; He, N. Multi-objective optimization for grinding of AISI D2 steel with Al2O3 wheel under MQL. Materials 2018, 11, 2269. [Google Scholar] [CrossRef] [Green Version]
- Nadolny, K.; Kieraś, S. Experimental studies on the centrifugal MQL-CCA method of applying coolant during the internal cylindrical grinding process. Materials 2020, 13, 2383. [Google Scholar] [CrossRef]
- Nadolny, K.; Kieraś, S.; Sutowski, P. Modern approach to delivery coolants, lubricants and antiadhesives in the environmentally friendly grinding process. Int. J. Precis. Eng. Manuf. Green Technol. 2021, 8, 639–663. [Google Scholar] [CrossRef]
- Silva, L.R.; Bianchi, E.C.; Fusse, R.Y.; Catai, R.E.; França, T.V.; Aguiar, P.R. Analysis of surface integrity for minimum quantity lubricant-MQL grinding. Int. J. Mach. Tools Manuf. 2007, 47, 412–418. [Google Scholar] [CrossRef]
- Lopes, J.C.; Garcia, M.V.; Volpato, R.S.; Mello, H.J.; Ribeiro, F.S.F.; Sanchez, L.E.A.; Rocha, K.O.; Neto, L.D.; Aguiar, P.R.; Bianchi, E.C. Application of MQL technique using TiO2 nanoparticles compared to MQL simultaneous to the grinding wheel cleaning jet. Int. J. Adv. Manuf. Technol. 2020, 106, 2205–2218. [Google Scholar] [CrossRef]
- Shao, Y.; Fergani, O.; Li, B.; Liang, S.Y. Residual stress modelling in minimum quantity lubrication grinding. Int. J. Adv. Manuf. Technol. 2016, 83, 743–751. [Google Scholar] [CrossRef]
- Korecki, M.; Wołowiec-Korecka, E.; Glenn, D. Single-Piece, High-Volume, Low-Distortion Case Hardening of Gears. Thermal Processing. September 2016, pp. 32–39. Available online: www.thermalprocessing.com (accessed on 27 December 2021).
- Stachurski, W.; Zgórniak, P.; Sawicki, J.; Przybysz, M. Hardening-related deformations of gear wheels after vacuum carburising and quenching in a 4D quenching chamber. Adv. Sci. Technol. Res. J. 2017, 11, 237–245. [Google Scholar] [CrossRef] [Green Version]
- ECOLUBRIC® MQL System. Available online: www.accu-svenska.se/mql-system/ecolubric-® (accessed on 5 January 2022).
- ECOLUBRIC E200L, Safety Data Sheet. Available online: www.accu-svenska.se/safety-datasheets (accessed on 5 January 2022).
- Pawlus, P.; Reizer, R.; Wieczorowski, M.; Krolczyk, G. Material ratio curve as information on the state of surface topography–A review. Precis. Eng. 2020, 65, 240–258. [Google Scholar] [CrossRef]
- Rodriguez, R.L.; Lopes, J.C.; Garcia, M.V.; Ribeiro, F.S.F.; Diniz, A.E.; Sanchez, L.E.A.; Mello, H.J.; Aguiar, R.; Bianchi, E.C. Application of hybrid eco-friendly MQL+WCJ technique in AISI 4340 steel grinding for cleaner and greener production. J. Clean. Prod. 2021, 283, 124670. [Google Scholar] [CrossRef]
Treatment | Process Parameters | Value |
---|---|---|
Vacuum carburising | Temperature | 920 °C |
Quenching | Medium | Nitrogen |
Pressure | 7 bar (0.7 MPa) | |
Precooling | 850 °C | |
Tempering | Temperature | 190 °C |
Time | 180 min |
Content of Elements (wt.%) | |||||||
---|---|---|---|---|---|---|---|
C | Mn | Cr | Si | Ni | Cu | P | S |
0.20 | 1.35 | 1.12 | 0.18 | 0.11 | 0.10 | 0.015 | 0.022 |
Grinding mode | Single-pass longitudinal circumferential surface grinding |
Grinding machine | Flat-surface grinder SPD-30B (Jotes Inc., Lodz, Poland) |
Workpiece material | 20MnCr5, carburized and hardened with 820 ± 10 HV |
Grinding wheel | IPA60EH20VTX (Vortex type) |
Grinding wheel rotational speed | ns = 1650 rpm |
Grinding wheel peripheral speed | vs = 30.2 m/s |
Workpiece peripheral speed | vw = 18 m/min |
Working engagement (machining allowance) | ae1 = 0.01 mm ae2 = 0.02 mm ae3 = 0.03 mm |
Dresser | Single grain diamond dresser type M1020 |
Dresser weight | Qd = 2.0 kt |
Grinding wheel peripheral speed while dressing | vsd = 10 m/s |
Dressing allowance | ad = 0.02 mm |
Axial table feed speed while dressing | vfd = 5.0 mm/min |
Number of dressing passes | id = 4 |
Environments | WET—conventional fluid MQL—minimum quantity lubrication |
Conventional grinding fluid (GF) | Emulgol ES-12 in a 5% concentration |
Conventional GF flow rate | QWET = 4 L/min |
MQL system | Ecolubric MQL Booster—oil-mist generator with single external nozzle |
MQL fluid | Ecolubric E200L—cold-pressed rapeseed oil without additives |
MQL flow rate | QMQL = 100 mL/h |
MQL supply air pressure | P = 0.6 MPa |
Properties | Description |
---|---|
Chemical description | A fraction of natural triglycerides, easily biodegradable substances |
Density at 0 °C | 0.9273 g/cm3 |
Dynamic viscosity at 0 °C | 2.881 N s/m2 |
Ignition point | 365 °C |
Flash point | 325 °C |
Partition coefficient | <3% |
Health hazard | Not hazard to human health |
Number of Samples | Grinding Depth ae (mm) | Method of Coolant-Lubricant Supply |
---|---|---|
1-W | 0.01 | WET |
1-M | MQL | |
2-W | 0.02 | WET |
2-M | MQL | |
3-W | 0.03 | WET |
3-M | MQL |
Type of Profilometer | Hommel Tester T8000 (Hommelwerke GmbH, Schwenningen, Germany) |
---|---|
Stylus type | TKU 300 |
Tracing length | lt = 4.8 mm |
Evaluation length | ln = 4.0 mm |
Sampling length | lr = 0.8 mm |
Evaluation width (3D measurements) | l = 5 mm |
Number of stylus passes (3D measurements) | 51 |
Distance between stylus tracks (3D measurements) | 0.1 mm |
Stylus tip radius | rtip = 2 μm |
Stylus tip angle | 90° |
Tracing speed | vt = 0.05 mm/s |
Long-wave profile filter (cutoff) | λc = 0.8 mm |
Measuring range | ±80 μm |
Method of Coolant-Lubricant Supply | Grinding Depth ae (mm) | Surface Roughness (μm) | ||
---|---|---|---|---|
Rp | Rv | Rz | ||
WET | 0.01 | 0.92 | 1.09 | 2.00 |
0.02 | 1.36 | 1.52 | 2.88 | |
0.03 | 1.55 | 1.82 | 3.33 | |
MQL | 0.01 | 0.76 | 0.92 | 1.67 |
0.02 | 0.88 | 1.09 | 1.96 | |
0.03 | 1.10 | 1.52 | 2.62 |
Method of Coolant-Lubricant Supply | Grinding Depth ae (mm) | Surface Roughness (μm) | |||
---|---|---|---|---|---|
Sz | Ssk | Sk | Spk | ||
WET | 0.01 | 2.25 | −0.223 | 0.673 | 0.252 |
0.02 | 5.20 | −0.606 | 0.916 | 0.424 | |
0.03 | 7.42 | −0.534 | 1.090 | 0.520 | |
MQL | 0.01 | 1.95 | −0.034 | 0.599 | 0.211 |
0.02 | 2.32 | −0.218 | 0.669 | 0.254 | |
0.03 | 4.69 | −0.234 | 0.820 | 0.340 |
Method of Coolant-Lubricant Supply | Grinding Depth ae (mm) | Texture Aspect Ratio | Isotropy (%) |
---|---|---|---|
Str (-) | |||
WET | 0.01 | 0.0172 | 1.72 |
0.02 | 0.0320 | 3.20 | |
0.03 | 0.0332 | 3.32 | |
MQL | 0.01 | 0.0079 | 0.80 |
0.02 | 0.0172 | 1.72 | |
0.03 | 0.0155 | 1.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stachurski, W.; Sawicki, J.; Januszewicz, B.; Rosik, R. The Influence of the Depth of Grinding on the Condition of the Surface Layer of 20MnCr5 Steel Ground with the Minimum Quantity Lubrication (MQL) Method. Materials 2022, 15, 1336. https://doi.org/10.3390/ma15041336
Stachurski W, Sawicki J, Januszewicz B, Rosik R. The Influence of the Depth of Grinding on the Condition of the Surface Layer of 20MnCr5 Steel Ground with the Minimum Quantity Lubrication (MQL) Method. Materials. 2022; 15(4):1336. https://doi.org/10.3390/ma15041336
Chicago/Turabian StyleStachurski, Wojciech, Jacek Sawicki, Bartłomiej Januszewicz, and Radosław Rosik. 2022. "The Influence of the Depth of Grinding on the Condition of the Surface Layer of 20MnCr5 Steel Ground with the Minimum Quantity Lubrication (MQL) Method" Materials 15, no. 4: 1336. https://doi.org/10.3390/ma15041336
APA StyleStachurski, W., Sawicki, J., Januszewicz, B., & Rosik, R. (2022). The Influence of the Depth of Grinding on the Condition of the Surface Layer of 20MnCr5 Steel Ground with the Minimum Quantity Lubrication (MQL) Method. Materials, 15(4), 1336. https://doi.org/10.3390/ma15041336