Tribocorrosion Susceptibility and Mechanical Characteristics of As-Received and Long-Term In-Vivo Aged Nickel-Titanium and Stainless-Steel Archwires
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Triboelectrochemical Experiments
2.3. Surface Profiles, Roughness, and Hardness Measurements
3. Results
3.1. Triboelectrochemical Properties
3.2. Surface Profiles and Hardness
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eliades, T. Orthodontic materials research and applications: Part 2. Current status and projected future developments in materials and biocompatibility. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Meletis, E.I.; Gibbs, C.A.; Lian, K. New dynamic corrosion test for dental materials. Dent. Mater. 1989, 5, 411–414. [Google Scholar] [CrossRef]
- Prymak, O.; Klocke, A.; Kahl-Nieke, B.; Epplea, M. Fatigue of orthodontic nickel–titanium (NiTi) wires in different fluids under constant mechanical stress. Mater. Sci. Eng. A 2004, 378, 110–114. [Google Scholar] [CrossRef]
- Berradja, A.; Bratu, F.; Benea, L.; Willems, G.; Celis, J.P. Effect of sliding wear on tribocorrosion behaviour of stainless steels in a Ringer’s solution. Wear 2006, 261, 987–993. [Google Scholar] [CrossRef]
- Schweitzer, P.A. Metallic Materials, Physical, Mechanical and Corrosion Properties; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Aziz-Kerrzo, M.; Conroy, K.G.; Fenelon, A.M.; Farrell, S.T.; Breslin, C.B. Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials 2001, 22, 1531–1539. [Google Scholar] [CrossRef] [Green Version]
- Vieira, A.C.; Ribeiro, A.R.; Rocha, L.A.; Celis, J.P. Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear 2006, 261, 994–1001. [Google Scholar] [CrossRef]
- Adler, T.A.; Walters, R.P. Corrosion and wear of 304 stainless steel using a scratch test. Corros. Sci. 1992, 33, 1855–1876. [Google Scholar] [CrossRef]
- Kosec, T.; Močnik, P.; Mezeg, U.; Legat, A.; Ovsenik, M.; Jenko, M.; Grant, J.T.; Primožič, J. Tribocorrosive study of new and in vivo exposed nickel titanium and stainless steel orthodontic archwires. Coatings 2020, 10, 230. [Google Scholar] [CrossRef] [Green Version]
- López-Ortega, A.; Arana, J.L.; Bayón, R. Tribocorrosion of passive materials: A review on test procedures and standards. Int. J. Corr 2018, 2018, 7345346. [Google Scholar] [CrossRef]
- Mischler, S.; Rosset, E.A.; Landolt, D. Effect of corrosion on the wear behavior of passivating metals in aqueous solutions. Tribol. Interface Eng. Ser. 1993, 25, 245–253. [Google Scholar]
- Kusy, R.P. A review of contemporary archwires: Their properties and characteristics. Angle Orthod. 1997, 67, 197–207. [Google Scholar]
- Fu, C.H.; Sealy, M.P.; Guo, Y.B.; Wei, X.T. Austenite–martensite phase transformation of biomedical Nitinol by ball burnishing. J. Mater. Process. Technol. 2014, 214, 3122–3130. [Google Scholar] [CrossRef]
- Carroll, W.M.; Kelly, M.J. Corrosion behavior of nitinol wires in body fluid environments. J. Biomed. Mater. Res. A 2003, 67, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Eliades, T.; Athanasiou, A.E. In vivo aging of orthodontic alloys: Implications for corrosion potential, nickel release, and biocompatibility. Angle Orthod. 2002, 72, 222–237. [Google Scholar] [PubMed]
- Eliades, T.; Bourauel, C. Intraoral aging of orthodontic materials: The picture we miss and its clinical relevance. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 403–412. [Google Scholar] [CrossRef]
- House, K.; Sernetz, F.; Dymock, D.; Sandy, J.R.; Ireland, A.J. Corrosion of orthodontic appliances—Should we care? Am. J. Orthod. Dentofac. Orthop. 2008, 133, 584–592. [Google Scholar] [CrossRef]
- Hunt, N.P.; Cunningham, S.J.; Golden, C.G.; Sheriff, M. An investigation into the effects of polishing on surface hardness and corrosion of orthodontic archwires. Angle Orthod. 1999, 69, 433–440. [Google Scholar]
- Ogawa, C.M.; Faltin, K., Jr.; Maeda, F.A.; Ortolani, C.L.F.; Guare, R.O.; Cardoso, C.A.B.; Costa, A.L.F. In vivo assessment of the corrosion of nickel-titanium orthodontic archwires by using scanning electron microscopy and atomic force microscopy. Microsc. Res. Tech. 2020, 83, 928–936. [Google Scholar] [CrossRef]
- Papaioannou, P.; Sutel, M.; Husker, K.; Muller, W.D.; Bartzela, T. A New Setup for Simulating the Corrosion Behavior of Orthodontic Wires. Materials 2021, 14, 3758. [Google Scholar] [CrossRef]
- Abedini, M.; Ghasemi, H.M.; Nili Ahmadabadi, M. Tribological behavior of NiTi alloy in martensitic and austenitic states. Mater. Des. 2009, 30, 4493–4497. [Google Scholar] [CrossRef]
- Kosec, T.; Močnik, P.; Legat, A. The tribocorrosion behaviour of NiTi alloy. Appl. Surf. Sci. 2014, 288, 727–735. [Google Scholar] [CrossRef]
- Mocnik, P.; Kosec, T.; Kovac, J.; Bizjak, M. The effect of pH, fluoride and tribocorrosion on the surface properties of dental archwires. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, N.; Rao, G.; Han, E.H.; Ke, W. Stress corrosion cracking of NiTi in artificial saliva. Dent. Mater. 2007, 23, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, K.; Hamada, K.; Moriyama, K.; Asaoka, K. Degradation and fracture of Ni-Ti superelastic wire in an oral cavity. Biomaterials 2001, 22, 2257–2262. [Google Scholar] [CrossRef]
- Zinelis, S.; Eliades, T.; Pandis, N.; Eliades, G.; Bourauel, C. Why do nickel-titanium archwires fracture intraorally? Fractographic analysis and failure mechanism of in-vivo fractured wires. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 84–89. [Google Scholar] [CrossRef]
- Landolt, D.; Mischler, S.; Stemp, M. Electrochemical methods in tribocorrosion: A critical apprasial. Electrochim. Acta 2001, 46, 3913–3929. [Google Scholar] [CrossRef]
- Galliano, F.; Galvanetto, E.; Mischler, S.; Landolt, D. Tribocorrosion behavior of plasma nitrided Ti–6Al–4V alloy in neutral NaCl solution. Surf. Coat. Technol. 2001, 145, 121–131. [Google Scholar] [CrossRef]
- Duffo, G.S.; Castillo, Q. Development of artificial saliva solution for studying the corrosion behaviour of dental alloys. Corrosion 2004, 60, 594–602. [Google Scholar] [CrossRef]
- Soltis, J. Passivity breakdown, pit initiation and propagation of pits in metallic materials—Review. Corros. Sci. 2015, 90, 5–22. [Google Scholar] [CrossRef]
- Wu, P.-Q.; Celis, J.P. Electrochemical noise measurements on stainless steel during corrosion–wear in sliding contacts. Wear 2004, 256, 480–490. [Google Scholar] [CrossRef]
- Danielson, M. Modeling of Certain Electrode Parameters on the Electrochemical Noise Response. Corrosion 1997, 53, 770–777. [Google Scholar] [CrossRef]
- Landolt, D.; Mischler, S.; Stemp, M.; Barril, S. Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear 2004, 256, 517–524. [Google Scholar] [CrossRef]
- Razalia, M.F.; Mahmuda, A.S.; Mokhtarb, N. Force delivery of NiTi orthodontic arch wire at different magnitude of deflections and temperatures: A finite element study. J. Mech. Behav. Biomed. Mater. 2018, 77, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Kusy, R.P.; Whitley, J.Q. Effects of surface roughness on the coefficient of friction in model orthodontic system. J. Biomech. 1990, 23, 913–925. [Google Scholar] [CrossRef]
- Liu, X.; Lin, J.; Ding, P. Changes in the Surface Roughness and Friction Coefficient of Orthodontic Bracket Slots Before and After Treatment. Scanning 2013, 35, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Marques, I.S.; Araujo, A.M.; Gurgel, J.A.; Normando, D. Debris, roughness and friction of stainless steel archwires following clinical use. Angle Orthod. 2010, 80, 521–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezeg, U.; Primozic, J. Influence of long-term in vivo exposure, debris accumulation and archwire material on friction force among different types of brackets and archwires couples. Eur. J. Orthod. 2017, 39, 673–679. [Google Scholar] [CrossRef]
- Sarul, M.; Kozakiewicz, M.; Jurczyszyn, K. Surface Evaluation of Orthodontic Wires Using Texture and Fractal Dimension Analysis. Materials 2021, 14, 3688. [Google Scholar] [CrossRef]
Parameter | Cycle | NiTi | SS | ||
---|---|---|---|---|---|
As-Received | In-Vivo Aged | As-Received | In-Vivo Aged | ||
repassivation time | |||||
(minutes) | Cycle 1 | 72.4 [59.0] 1 | 5.6 [2.7] | 279.1 [126.8] | 329.1 [308.4] |
Cycle 2 | 87.2 [64.7] | 8.3 [1.5] | 378.6 [27.2] | 324.1 [253.5] | |
Cycle 3 | 50.8 [29.0] | 9.3 [7.4] | 431.1 [71.7] | 167.8 [150.7] | |
Cycle 4 | 82.9 [60.3] | 6.3 [1.2] | 402.3 [97.3] | 281.0 [192.3] | |
electrochemical potential | |||||
(mV) | Cycle 1 | −200 [167] | −213 [72] | −159 [42] | −184 [158] |
Cycle 2 | −232 [197] | −228 [73] | −218 [37] | −228 [134] | |
Cycle 3 | −244 [179] | −257 [24] | −252 [37] | −263 [138] | |
Cycle 4 | −226 [110] | −240 [34] | −306 [23] | −264 [93] | |
electrochemical current | |||||
(nA) | Cycle 1 | 152 [185] | 74 [28] | 261 [79] | 96 [122] |
Cycle 2 | 123 [126] | 110 [72] | 360 [60] | 86 [79] | |
Cycle 3 | 107 [85] | 83 [21] | 385 [6] | 157 [87] | |
Cycle 4 | 175 [197] | 98 [47] | 345 [128] | 312 [261] | |
friction coefficient | |||||
Cycle 1 | 0.661 [0.08] | 0.638 [0.04] | 0.578 [0.01] | 0.554 [0.02] | |
Cycle 2 | 0.657 [0.07] | 0.634 [0.05] | 0.556 [0.04] | 0.564 [0.05] | |
Cycle 3 | 0.672 [0.04] | 0.624 [0.05] | 0.549 [0.04] | 0.545 [0.07] | |
Cycle 4 | 0.666 [0.04] | 0.668 [0.06] | 0.522 [0.03] | 0.562 [0.07] |
Parameter | Area of the Wear Track | NiTi | SS | ||
---|---|---|---|---|---|
As-Received | In-Vivo Aged | As-Received | In-Vivo Aged | ||
roughness | |||||
(Ra in µm) | outside | 0.3157 [0.068] | 0.1567 [0.001] | 0.0180 [0.002] | 0.5010 [0.114] |
inside | 0.0839 [0.010] | 0.0938 [0.012] | 0.0254 [0.004] | 0.0248 [0.010] | |
hardness | |||||
outside | 210 [25] | 150 [30] | 445 [15] | 450 [225] | |
inside | 230 [30] | 330 [20] | 560 [90] | 390 [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Primozic, J.; Hren, M.; Mezeg, U.; Legat, A. Tribocorrosion Susceptibility and Mechanical Characteristics of As-Received and Long-Term In-Vivo Aged Nickel-Titanium and Stainless-Steel Archwires. Materials 2022, 15, 1427. https://doi.org/10.3390/ma15041427
Primozic J, Hren M, Mezeg U, Legat A. Tribocorrosion Susceptibility and Mechanical Characteristics of As-Received and Long-Term In-Vivo Aged Nickel-Titanium and Stainless-Steel Archwires. Materials. 2022; 15(4):1427. https://doi.org/10.3390/ma15041427
Chicago/Turabian StylePrimozic, Jasmina, Miha Hren, Uros Mezeg, and Andraz Legat. 2022. "Tribocorrosion Susceptibility and Mechanical Characteristics of As-Received and Long-Term In-Vivo Aged Nickel-Titanium and Stainless-Steel Archwires" Materials 15, no. 4: 1427. https://doi.org/10.3390/ma15041427
APA StylePrimozic, J., Hren, M., Mezeg, U., & Legat, A. (2022). Tribocorrosion Susceptibility and Mechanical Characteristics of As-Received and Long-Term In-Vivo Aged Nickel-Titanium and Stainless-Steel Archwires. Materials, 15(4), 1427. https://doi.org/10.3390/ma15041427