Cytotoxicity of Acrylic Resins, Particulate Filler Composite Resin and Thermoplastic Material in Artificial Saliva with and without Melatonin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Storage and Test Medium
2.3. Cell Culture
2.4. Cytotoxicity Test
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reiter, R.J.; Tan, D.X.; Fuentes-Broto, L. Melatonin: A multitasking molecule. Prog. Brain Res. 2010, 181, 127–151. [Google Scholar] [PubMed]
- Tan, D.X.; Pöeggeler, B.; Reiter, R.J.; Chen, L.D.; Chen, S.; Manchester, L.C.; Barlow-Walden, L.R. The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole in vivo. Cancer Lett. 1993, 70, 65–71. [Google Scholar] [CrossRef]
- Vijayalaxmi; Reiter, R.J.; Meltz, M.L. Melatonin protects human blood lymphocytes from radiation-induced chromosome damage. Mutat. Res. Lett. 1995, 346, 23–31. [Google Scholar] [CrossRef]
- Karbownik, M.; Lewinski, A.; Reiter, R.J. Anticarcinogenic actions of melatonin which involve antioxidative processes: Comparison with other antioxidants. Int. J. Biochem. Cell Biol. 2001, 33, 735–753. [Google Scholar] [CrossRef]
- Reiter, R.J.; Manchester, L.C.; Tan, D.X. Neurotoxins: Free radical mechanisms and melatonin protection. Curr. Neuropharmacol. 2010, 8, 194–210. [Google Scholar] [CrossRef] [Green Version]
- Jou, M.J.; Peng, T.I.; Hsu, L.F.; Jou, S.B.; Reiter, R.J.; Yang, C.M.; Chiao, C.C.; Lin, Y.F.; Chen, C.C. Visualization of melatonin’s multiple mitochondrial levels of protection against mitochondrial Ca2+-mediated permeability transition and beyond in rat brain astrocytes. J. Pineal Res. 2010, 48, 20–38. [Google Scholar] [CrossRef]
- Paul, S.; Bhattacharya, P.; DasMahapatra, P.; Swarnakar, S. Melatonin protects against endometriosis viaregulation of matrix metalloproteinase-3 and an apoptotic pathway. J. Pineal Res. 2010, 49, 156–168. [Google Scholar]
- Paradies, G.; Petrosillo, G.; Paradies, V.; Reiter, R.J.; Ruggiero, F.M. Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J. Pineal Res. 2010, 48, 297–310. [Google Scholar] [CrossRef]
- Zieniewska, I.; Mciejczyk, M.; Zalewska, A. The effect of selected dental materials used in conservative dentistry, endodontics, surgery, and orthodontics as well as during the periodontal treatment on the redox balance in the oral cavity. Int. J. Mol. Sci. 2020, 21, 9684. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Mikoluc, B.; Pietrucha, B.; Heropolitanska-Pliszka, E.; Pac, M.; Motkowski, R.; Car, H. Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome. Redox Biol. 2017, 11, 375–383. [Google Scholar] [CrossRef]
- Gerreth, P.; Maciejczyk, M.; Zalewska, A.; Gerreth, K.; Hojan, K. Comprehensive evaluation of the oral health status, salivary gland function, and oxidative stress in the saliva of patients with subacute phase of stroke: A Case-Control Study. J. Clin. Med. 2020, 9, 2252. [Google Scholar] [CrossRef] [PubMed]
- Sawczuk, B.; Maciejczyk, M.; Sawczuk-Siemieniuk, M.; Posmyk, R.; Zalewska, A.; Car, H. Salivary gland function, antioxidant defence and oxidative damage in the saliva of patients with breast cancer: Does the BRCA1 mutation disturb the salivary redox profile? Cancers 2019, 11, 1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciejczyk, M.; Szulimowska, J.; Skutnik, A.; Taranta-Janusz, K.; Wasilewska, A.; Wiśniewska, N.; Zalewska, A. Salivary biomarkers of oxidative stress in children with chronic kidney disease. J. Clin. Med. 2018, 7, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soybir, G.; Topuzlu, C.; OdabaŞ, Ö.; Dolay, K.; Bilir, A.; Köksoy, F. The effects of melatonin on angiogenesis and wound healing. Surg. Today 2003, 33, 896–901. [Google Scholar] [CrossRef]
- Blasiak, J.; Kasznicki, J.; Drzewoski, J.; Pawlowska, E.; Szczepanska, J.; Reiter, R.J. Perspectives on the use of melatonin to reduce cytotoxic and genotoxic effects of methacrylate-based dental materials. J. Pineal Res. 2011, 51, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Schweikl, H.; Spagnuolo, G.; Schmalz, G. Genetic and cellular toxicology of dental resin monomers. J. Dent. Res. 2006, 85, 870–877. [Google Scholar] [CrossRef]
- Vasudeva, G. Monomer systems for dental composites and their future: A review. J. Calif. Dent. Assoc. 2009, 37, 389–398. [Google Scholar]
- Caballero, B.; Vega-Naredo, I.; Sierra, V.; Huidobro-Fernández, C.; Soria-Valles, C.; De Gonzalo-Calvo, D.; Tolivia, D.; Pallás, M.; Camins, A.; Rodríguez-Colunga, M.J.; et al. Melatonin alters cell death processes in response to age-relate doxidative stres in the brain of senescence-acceleratedmice. J. Pineal Res. 2009, 46, 106–114. [Google Scholar] [CrossRef]
- Lin, A.M.; Feng, S.F.; Chao, P.L.; Yang, C.H. Melatonin inhibits arsenite-induced peripheral neurotoxicity. J. Pineal Res. 2009, 46, 64–70. [Google Scholar] [CrossRef]
- Marino, A.; DiPaola, R.; Crisafulli, C.; Mazzon, E.; Morabito, R.; Paterniti, I.; Galuppo, M.; Genovese, T.; La Spada, G.; Cuzzocrea, S. Protective effectof melatonin against the inflammatory response elicited by crude venom from isolated nematocysts of Pelagianoctiluca (Cnidaria, Scyphozoa). J. Pineal Res. 2009, 47, 56–69. [Google Scholar] [CrossRef]
- Joo, S.S.; Yoo, Y.M. Melatonin induces apoptotic death in LNCaP cells via p38 and JNK pathways: Therapeutic implications for prostate cancer. J. Pineal Res. 2009, 47, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Issa, Y.; Watts, D.C.; Brunton, P.A.; Waters, C.M.; Duxbury, A.J. Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent. Mater. 2004, 20, 12–20. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Bakopoulou, A.; Tsiftsoglou, A.; Galaktidou, G.; Markala, D.; Triviai, I.; Garefis, P. Patterns of cell death and cell cycle profiles of cultured WEHI 13 var fibroblasts exposed to eluates of composite resins used for direct and indirect restorations. Eur. J. Oral Sci. 2007, 115, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Angius, F.; Floris, A. Liposomes and MTT cell viability assay: An incompatible affair. Toxicol. In Vitro 2015, 29, 314–319. [Google Scholar] [CrossRef]
- Thonemnn, B.; Schmalz, G.; Hiller, K.A.; Schweikl, H. Responses of L929 moue fibroblasts, primary and immortalized bovine dental papillaa, derived cell lines to dental resin components. Dent. Mater. 2002, 18, 318–323. [Google Scholar] [CrossRef]
- Murray, P.E.; Godoy, C.G.; Godoy, F.G. How is the biocompatibilty of dental biomaterials evaluated? Med. Oral Patol. Oral Y Cir. Bucal 2007, 12, 258–266. [Google Scholar]
- Schmalz, G.; Bindslev, D.A. Biocompatibility of Dental Materials, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 13–40. [Google Scholar]
- Freshney, R.I. Culture of Animal Cells: A Manual of Basic Technique, 5th ed.; John Wiley & Sons: Haboken, NJ, USA, 2005; pp. 25–36. [Google Scholar]
- Wataha, J.C.; Rueggeberg, F.A.; Lapp, C.A.; Lewis, J.B.; Lockwood, P.E.; Ergle, J.W.; Mettenburg, D.J. In vitro cytotoxicity of resin-containing restorative materials after aging in artificial saliva. Clin. Oral Investig. 1999, 3, 144–153. [Google Scholar] [CrossRef]
- Loza-Herrero, M.A.; Rueggeberg, F.A.; Caughman, W.F.; Schuster, G.S.; Lefebvre, C.A.; Gardner, F.M. Effect of heating delay on conversion and strength of a post-cured resin composite. J. Dent. Res. 1998, 77, 426–431. [Google Scholar] [CrossRef]
- Jung, Y.J.; Hyun, H.K.; Kim, Y.J.; Jang, K.T. Effect of collagenase and esterase on resin-dentin interface: A comparative study between a total-etch adhesive and a self-etch adhesive. Am. J. Dent. 2009, 22, 295–298. [Google Scholar]
- Goldberg, M. In vitro and in vivo studies on the toxicity of dental resin components: A review. Clin. Oral Investig. 2008, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L.; Condon, J.R. Rate of elution of leachable components from composite. Dent. Mater. 1990, 6, 282–287. [Google Scholar] [CrossRef]
- Yildirim-Bicer, A.Z.; Ergun, G.; Egilmez, F.; Demirkoprulu, H. In vitro cytotoxicity of indirect composite resins: Effect of storing in artificial saliva. Indian J. Dent. Res. 2013, 24, 81–86. [Google Scholar] [PubMed]
- Blasiak, J.; Synowiec, E.; Tarnawska, J.; Czarny, P.; Poplawski, T.; Reiter, R.J. Dental methacrylates may exert genotoxic effects via the oxidative induction of DNA double strand breaks and the inhibitation of their repair. Mol. Biol. Rep. 2012, 39, 7487–7496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Materials | Abbreviation | Chemical Composition | Manufacturer |
---|---|---|---|
Vertex | V | Powder: Polymethylmethacrylate, liquid; MethylMethacrylate, Crosslinker, Accelerator, UV Absorber | Vertex-Dental, Zeist, The Netherlands |
Orthocryl | O | Powder: Polymethylmethacrylate; liquid: Methyl 2-methylprop-2-enote, Methyl 2-methylpropenoate Methylmethylpropenoate Methylmethacrylate | Dentarium, Ispringen, Germany |
Imident | I | Power: Polymethylmethacrylate; liquid:MethylMethacrylate, Crosslinker, Accelerator | Imicryl, Konya, Turkey |
Paladent | P | Powder: Polymethylmethacrylate; liquid: MethylMethacrylateDimethylacrylate | Med-Dent, Ankara, Turkey |
Meliodent | M | Powder: Polymethylmethacrylate; liquid:MethylMethacrylateDimethylacrylate | HeraeusKulzer, Hanau, Germany |
Bioplast | B | Ethylenvinylacetat (EVA) | AmBurgberg, Iserlohn, Germany |
Signum | S | Bisphenol A-diglycidyl dimethacrylate (Bis-GMA) and Triethylene glycol dimethacrylate (TEGDMA), SiO2, Ba-Al-Si | HerausKulzer, Hanau, Germany |
Tescera | T | Glass, amorf silica, Etoksilatbisfenol-A-dimethacrylat, bisfenol-A-diglisidilmethacrylate | Bisco, Schaumburg, IL, USA |
Adoro | A | UDMA, SiO2 | Ivoclar-Vivadent, Schaan, Liechtenstein |
Source | Type III Sum of Squares | df | Mean Square | F | p |
---|---|---|---|---|---|
Groups (AS, ASM) | 0.000 | 1 | 0.000 | 0.796 | 0.373 |
Material | 0.019 | 9 | 0.002 | 5.013 | 0.000 |
Incubation period | 0.082 | 4 | 0.020 | 47.944 | 0.000 |
Groups (AS, ASM) * Material | 0.008 | 9 | 0.001 | 2.212 | 0.023 |
Groups (AS, ASM) * Incubation period | 0.032 | 4 | 0.008 | 18.565 | 0.000 |
Material * Incubation period | 0.013 | 36 | 0.000 | 0.864 | 0.691 |
Groups (AS, ASM) * Material * Incubation period | 0.019 | 36 | 0.001 | 1.221 | 0.196 |
Error | 0.085 | 200 | |||
Total | 1.674 | 300 | |||
Corrected Total | 0.259 | 299 |
Materials | 1 h | 24 h | 72 h | 1 Week | 2 Week | Mean | p |
---|---|---|---|---|---|---|---|
T | 0.06 ± 0.01 b | 0.05 ± 0.01 c | 0.04 ± 0.01 c | 0.06 ± 0.01 c | 0.03 ± 0.01 c | 0.04 ± 0.01 | 0.06 |
A | 0.06 ± 0.03 b | 0.07 ± 0.02 c | 0.06 ± 0.01 c | 0.05 ± 0.01 c | 0.02 ± 0.01 c | 0.04 ± 0.01 | 0.06 |
B | 0.1 ± 0.03 b | 0.08 ± 0.04 c | 0.07 ± 0.03 c | 0.08 ± 0.01 c | 0.05 ± 0.01 c | 0.06 ± 0.01 | 0.3 |
P | 0.08 ± 0.01 a | 0.07 ± 0.01 a | 0.09 ± 0.01 a | 0.08 ± 0.01 a | 0.03 ± 0.01 b | 0.06 ± 0.01 | 0.01 |
O | 0.08 ± 0.04 b | 0.08 ± 0.01 c | 0.08 ± 0.01 c | 0.07 ± 0.01 c | 0.03 ± 0.02 c | 0.05 ± 0.01 | 0.19 |
M | 0.06 ± 0.02 a | 0.07 ± 0.01 a,b | 0.09 ± 0.01 b | 0.08 ± 0.01 a,b | 0.06 ± 0.01 ab | 0.06 ± 0.01 | 0.02 |
S | 0.1 ± 0.02 a | 0.08 ± 0.01 a,b | 0.09 ± 0.01 a,b | 0.07 ± 0.01 a,b | 0.05 ± 0.01 b | 0.06 ± 0.01 | 0.02 |
I | 0.11 ± 0.02 a | 0.08 ± 0.01 a,b | 0.09 ± 0.02 a,b | 0.09 ± 0.01 b | 0.06 ± 0.02 b | 0.05 ± 0.02 | 0.02 |
V | 0.10 ± 0.05 a | 0.08 ± 0.01 a,b | 0.08 ± 0.01 a,b | 0.08 ± 0.03 b | 0.06 ± 0.02 b | 0.06 ± 0.01 | 0.02 |
Materials | 1 h | 24 h | 72 h | 1 Week | 2 Week | Mean | p |
---|---|---|---|---|---|---|---|
T | 0.12 ± 0.02 a | 0.05 ± 0.01 b | 0.06 ± 0.01 b | 0.04 ± 0.01 b | 0.04 ± 0.01 b | 0.06 ± 0.01 | 0.009 |
A | 0.12 ± 0.02 a | 0.04 ± 0.01 b | 0.06 ± 0.01 b | 0.04 ± 0.01 b | 0.06 ± 0.02 b | 0.06 ± 0.01 | <0.001 |
B | 0.13 ± 0.02 a | 0.06 ± 0.01 b | 0.06 ± 0.01 b | 0.05 ± 0.01 b | 0.05 ± 0.02 b | 0.07 ± 0.01 | 0.008 |
P | 0.13 ± 0.01 a | 0.04 ± 0.02 b | 0.08 ± 0.02 c | 0.07 ± 0.01 b,c | 0.05 ± 0.01 b,c | 0.07 ± 0.01 | 0.023 |
O | 0.12 ± 0.02 b | 0.03 ± 0.01 c | 0.07 ± 0.02 c | 0.06 ± 0.0 d | 0.04 ± 0.01 d | 0.06 ± 0.01 | 0.463 |
M | 0.07 ± 0.02 a | 0.07 ± 0.01 a,b | 0.09 ± 0.01 b | 0.08 ± 0.01 a,b | 0.06 ± 0.01 a,b | 0.06 ± 0.01 | 0.02 |
S | 0.12 ± 0.02 a | 0.03 ± 0.01 b | 0.06 ± 0.02 a,b | 0.06 ± 0.02 a,b | 0.05 ± 0.01 a,b | 0.06 ± 0.02 | 0.02 |
I | 0.11 ± 0.04 b | 0.04 ± 0.01 c | 0.06 ± 0.02 c | 0.07 ± 0.01 d | 0.08 ± 0.03 d | 0.07 ± 0.02 | 0.1 |
V | 0.11 ± 0.05 c | 0.04 ± 0.01 c | 0.07 ± 0.04 c | 0.07 ± 0.03 d | 0.06 ± 0.02 d | 0.07 ± 0.02 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cengiz, S.; Velioğlu, N.; Cengiz, M.İ.; Çakmak Özlü, F.; Akbal, A.U.; Çoban, A.Y.; Özcan, M. Cytotoxicity of Acrylic Resins, Particulate Filler Composite Resin and Thermoplastic Material in Artificial Saliva with and without Melatonin. Materials 2022, 15, 1457. https://doi.org/10.3390/ma15041457
Cengiz S, Velioğlu N, Cengiz Mİ, Çakmak Özlü F, Akbal AU, Çoban AY, Özcan M. Cytotoxicity of Acrylic Resins, Particulate Filler Composite Resin and Thermoplastic Material in Artificial Saliva with and without Melatonin. Materials. 2022; 15(4):1457. https://doi.org/10.3390/ma15041457
Chicago/Turabian StyleCengiz, Seda, Neslin Velioğlu, Murat İnanç Cengiz, Fehiye Çakmak Özlü, Ahmet Ugur Akbal, Ahmet Yılmaz Çoban, and Mutlu Özcan. 2022. "Cytotoxicity of Acrylic Resins, Particulate Filler Composite Resin and Thermoplastic Material in Artificial Saliva with and without Melatonin" Materials 15, no. 4: 1457. https://doi.org/10.3390/ma15041457
APA StyleCengiz, S., Velioğlu, N., Cengiz, M. İ., Çakmak Özlü, F., Akbal, A. U., Çoban, A. Y., & Özcan, M. (2022). Cytotoxicity of Acrylic Resins, Particulate Filler Composite Resin and Thermoplastic Material in Artificial Saliva with and without Melatonin. Materials, 15(4), 1457. https://doi.org/10.3390/ma15041457