An Artificial PVA-BC Composite That Mimics the Biomechanical Properties and Structure of a Natural Intervertebral Disc
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication Process
2.2. Material Property Characterisations
2.3. Data Analysis
2.4. Assessment of Cytotoxicity
2.5. Statistical Analysis
3. Results
3.1. PVA-BC Composite Morphography
3.2. Unconfined Compression
3.3. Compressive Creep
3.4. Cytotoxicity
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bao, Q.B.; Mccullen, G.M.; Higham, P.A.; Dumbleton, J.H.; Yuan, H.A. The artificial disc: Theory, design and materials. Biomaterials 1996, 17, 1157–1167. [Google Scholar] [CrossRef]
- Hedman, T.P.; Kostuik, J.P.; Fernie, G.R.; Heller, W.G. Design of an Intervertebral Disc Prosthesis. Spine 1991, 16, S256–S260. [Google Scholar] [CrossRef] [PubMed]
- Park, P.; Garton, H.J.; Gala, V.C.; Hoff, J.T.; McGillicuddy, J.E. Adjacent Segment Disease after Lumbar or Lumbosacral Fusion: Review of the Literature. Spine 2004, 29, 1938–1944. [Google Scholar] [CrossRef] [PubMed]
- Cheh, G.; Lenke, L.G.; Lehman, R.A.; Kim, Y.J.; Nunley, R.; Bridwell, K.H. The Reliability of Preoperative Supine Radiographs to Predict the Amount of Curve Flexibility in Adolescent Idiopathic Scoliosis. Spine 2007, 32, 2668–2672. [Google Scholar] [CrossRef]
- Bertagnoli, R.; Kumar, S. Indications for Full Prosthetic Disc Arthroplasty: A Correlation of Clinical Outcome Against a Variety of Indications. Eur. Spine J. 2002, 11, S131–S136. [Google Scholar] [CrossRef] [Green Version]
- van Ooij, A.; Kurtz, S.M.; Stessels, F.; Noten, H.; van Rhijn, L. Polyethylene wear debris and long-term clinical failure of the CHARITÉ disc prosthesis: A study of 4 patients. Spine 2007, 32, 223–229. [Google Scholar] [CrossRef]
- Kurtz, S.M.; van Ooij, A.; Ross, R.; Malefijt, J.D.W.; Peloza, J.; Ciccarelli, L.; Villarraga, M.L. Polyethylene wear and rim fracture in total disc arthroplasty. Spine J. 2007, 7, 12–21. [Google Scholar] [CrossRef]
- Blumenthal, S.; McAfee, P.C.; Guyer, R.D.; Hochschuler, S.H.; Geisler, F.H.; Holt, R.T.; Garcia, R., Jr.; Regan, J.J.; Ohnmeiss, D.D. A prospective, randomized, multicenter Food and Drug Administration investigational device exemptions study of lumbar total disc replacement with the CHARITÉ artificial disc versus lumbar fusion: Part I: Evaluation of clinical outcomes. Spine 2005, 30, 1565–1575. [Google Scholar] [CrossRef]
- Guyer, R.D.; McAfee, P.C.; Banco, R.J.; Bitan, F.D.; Cappuccino, A.; Geisler, F.H.; Hochschuler, S.H.; Holt, R.T.; Jenis, L.G.; Majd, M.E.; et al. Prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITÉ artificial disc versus lumbar fusion: Five-year follow-up. Spine J. 2009, 9, 374–386. [Google Scholar] [CrossRef]
- Zigler, J.; Delamarter, R.; Spivak, J.M.; Linovitz, R.J.; Danielson, G.O., III; Haider, T.T.; Cammisa, F.; Zuchermann, J.; Balderston, R.; Kitchel, S.; et al. Results of the prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of the ProDisc–L total disc replacement versus circumferential fusion for the treatment of 1-level degenerative disc disease. Spine 2007, 32, 1155–1162. [Google Scholar] [CrossRef]
- Salzmann, S.N.; Plais, N.; Shue, J.; Girardi, F.P. Lumbar disc replacement surgery—successes and obstacles to widespread adoption. Curr. Rev. Musculoskelet. Med. 2017, 10, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, M.-J.; Cao, S.-S. Artificial total disc replacement versus fusion for lumbar degenerative disc disease: A meta-analysis of randomized controlled trials. Arch. Orthop. Trauma. Surg. 2014, 134, 149–158. [Google Scholar] [CrossRef] [PubMed]
- van den Broek, P.R.; Huyghe, J.M.; Ito, K. Biomechanical behavior of a biomimetic artificial intervertebral disc. Spine 2012, 37, E367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shikinami, Y.; Kawabe, Y.; Yasukawa, K.; Tsuta, K.; Kotani, Y.; Abumi, K. A biomimetic artificial intervertebral disc system composed of a cubic three-dimensional fabric. Spine J. 2010, 10, 141–152. [Google Scholar] [CrossRef]
- Jacobs, C.; Siepe, C.J.; Ito, K. Viscoelastic cervical total disc replacement devices: Design concepts. Spine J. 2020, 20, 1911–1924. [Google Scholar] [CrossRef]
- Brenke, C.; Schmieder, K.; Barth, M. Core herniation after implantation of a cervical artificial disc: Case report. Eur. Spine J. 2015, 24, S536–S539. [Google Scholar] [CrossRef]
- Sundseth, J.; Jacobsen, E.A.; Kolstad, F.; Nygaard, O.P.; Zwart, J.A.; Hol, P.K. Magnetic resonance imaging evaluation after implantation of a titanium cervical disc prosthesis: A comparison of 1.5 and 3 Tesla magnet strength. Eur. Spine J. 2013, 22, 2296–2302. [Google Scholar] [CrossRef] [Green Version]
- Smeathers, J.; Joanes, D. Dynamic compressive properties of human lumbar intervertebral joints: A comparison between fresh and thawed specimens. J. Biomech. 1988, 21, 425–433. [Google Scholar] [CrossRef]
- Dhillon, N.; Bass, E.C.; Lotz, J.C. Effect of Frozen Storage on the Creep Behavior of Human Intervertebral Discs. Spine 2001, 26, 883–888. [Google Scholar] [CrossRef]
- Race, A.; Broom, N.D.; Robertson, P. Effect of Loading Rate and Hydration on the Mechanical Properties of the Disc. Spine 2000, 25, 662–669. [Google Scholar] [CrossRef]
- Bichara, D.A.; Bodugoz-Sentruk, H.; Ling, D.; Malchau, E.; Bragdon, C.R.; Muratoglu, O.K. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel. Biomed. Mater. 2014, 9, 045012. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Song, J.; Wang, S.; Liu, W. PVA-Based Hydrogels: Promising Candidates for Articular Cartilage Repair. Macromol. Biosci. 2021, 21, 2100147. [Google Scholar] [CrossRef] [PubMed]
- Holloway, J.L.; Spiller, K.L.; Lowman, A.M.; Palmese, G.R. Analysis of the in vitro swelling behavior of poly (vinyl alcohol) hydrogels in osmotic pressure solution for soft tissue replacement. Acta Biomater. 2011, 7, 2477–2482. [Google Scholar] [CrossRef]
- Shi, Y.; Xiong, D. Microstructure and friction properties of PVA/PVP hydrogels for articular cartilage repair as function of polymerization degree and polymer concentration. Wear 2013, 305, 280–285. [Google Scholar] [CrossRef]
- Kumar, A.; Han, S.S. PVA-based hydrogels for tissue engineering: A review. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 159–182. [Google Scholar] [CrossRef]
- Curley, C.; Hayes, J.C.; Rowan, N.J.; Kennedy, J.E. An evaluation of the thermal and mechanical properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application. J. Mech. Behav. Biomed. Mater. 2014, 40, 13. [Google Scholar] [CrossRef]
- Hayes, J.C.; Kennedy, J.E. An evaluation of the biocompatibility properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application. Mater. Sci. Eng. 2016, 59, 894–900. [Google Scholar] [CrossRef]
- Holloway, J.L.; Lowman, A.M.; Palmese, G.R. Mechanical evaluation of poly (vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater. 2010, 6, 4716–4724. [Google Scholar] [CrossRef]
- Holloway, J.L.; Lowman, A.M.; Vanlandingham, M.R.; Palmese, G.R. Interfacial optimization of fiber-reinforced hydrogel composites for soft fibrous tissue applications. Acta Biomater. 2014, 10, 3581–3589. [Google Scholar] [CrossRef]
- Neo, P.Y.; Shi, P.; Goh, J.C.; Toh, S.L. Characterization and mechanical performance study of silk/PVA cryogels: Towards nucleus pulposus tissue engineering. Biomed. Mater. 2014, 9, 065002. [Google Scholar] [CrossRef]
- Thomas, J.; Lowman, A.; Marcolongo, M. Novel associated hydrogels for nucleus pulposus replacement. J. Biomed. Mater. Res. A 2003, 67A, 1329–1337. [Google Scholar] [CrossRef]
- Joshi, A.; Fussell, G.; Thomas, J.; Hsuan, A.; Lowman, A.; Karduna, A.; Vresilovic, E.; Marcolongo, M. Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. Biomaterials 2006, 27, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.H.; Campbell, G. Formulations of polyvinyl alcohol cryogel that mimic the biomechanical properties of soft tissues in the natural lumbar intervertebral disc. Spine 2009, 34, 2745–2753. [Google Scholar] [CrossRef] [PubMed]
- Millon, L.E.; Oates, C.J.; Wan, W. Compression properties of polyvinyl alcohol–bacterial cellulose nanocomposite. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90B, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, J.; Steffen, T.; Nelson, F.; Winterbottom, N.; Hollander, A.P.; Poole, R.A.; Aebi, M.; Alini, M. The human lumbar intervertebral disc: Evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J. Clin. Investig. 1996, 98, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Gower, W.; Pedrini, V. Age-related variations in protein polysaccharides from human nucleus pulposus, annulus fibrosus, and costal cartilage. J. Bone Jt. Surg. Am. 1969, 51, 1154–1162. [Google Scholar] [CrossRef]
- Kraemer, J.; Kolditz, D.; Gowin, R. Water and Electrolyte Content of Human Intervertebral Discs Under Variable Load. Spine 1985, 10, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Dickson, I.R.; Happey, F.; Pearson, C.H.; Naylor, A.; Turner, R.L. Variations in the Protein Components of Human Intervertebral Disk with Age. Nature 1967, 215, 52–53. [Google Scholar] [CrossRef] [PubMed]
- Iatridis, J.; Weidenbaum, M.; Setton, L.A.; Mow, V.C. Is the Nucleus Pulposus a Solid or a Fluid? Mechanical Behaviors of the Nucleus Pulposus of the Human Intervertebral Disc. Spine 1996, 21, 1174–1184. [Google Scholar] [CrossRef]
- McDevitt, C. Proteoglycans of the intervertebral disc. In The Biology of the Intervertebral Disc; Ghosh, P., Ed.; CDC Press: Boca Raton, FL, USA, 1988; pp. 151–171. [Google Scholar]
- Eyre, D.R. Collagens of the disc. In The Biology of the Intervertebral Disc; Ghosh, P., Ed.; CRC Press: Boca Raton, FL, USA, 1988; pp. 171–189. [Google Scholar]
- Inoue, H.; Takeda, T. Three-dimensional observation of collagen framework oflumbar intervertebral discs. Acta Orthop. Scand. 1975, 46, 949–956. [Google Scholar] [CrossRef] [Green Version]
- Adams, P.; Eyre, D.R.; Muir, H. Biochemical Aspects of Development and Ageing of Human Lumbar Intervertebral Discs. Rheumatology 1977, 16, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Buckwalter, J.A. Aging and Degeneration of the Human Intervertebral Disc. Spine 1995, 20, 1307–1314. [Google Scholar] [CrossRef]
- Mikawa, Y.; Hamagami, H.; Shikata, J.; Yamamuro, T. Elastin in the human intervertebral disk. A histological and biochemical study comparing it with elastin in the human yellow ligament. Arch. Orthop. Trauma. Surg. 1986, 105, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Fairbank, J.C.T.; Roberts, S.; Urban, J.P.G. The elastic fiber network of the anulus fibrosus of the normal and scoliotic human intervertebral disc. Spine 2005, 30, 1815–1820. [Google Scholar] [CrossRef]
- Grant, C.; Twigg, P.; Egan, A.; Moody, A.; Smith, A.; Eagland, D.; Crowther, N.; Britland, S. Poly(vinyl alcohol) Hydrogel as a Biocompatible Viscoelastic Mimetic for Articular Cartilage. Biotechnol. Prog. 2010, 22, 1400–1406. [Google Scholar] [CrossRef]
- Kosukegawa, H.; Mamada, K.; Kuroki, K.; Liu, L.; Inoue, K.; Hayase, T.; Ohta, M. Measurements of Dynamic Viscoelasticity of Poly (vinyl alcohol) Hydrogel for the Development of Blood Vessel Biomodeling. J. Fluid Sci. Technol. 2008, 3, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Fumio, U.; Hiroshi, Y.; Kumiko, N.; Sachihiko, N.; Kenji, S.; Yasunori, M. Swelling and mechanical properties of poly(vinyl alcohol) hydrogels. Int. J. Pharm. 1990, 58, 135–142. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, X.; Xu, C.; Kotov, N.A. Water-Rich Biomimetic Composites with Abiotic Self-Organizing Nanofiber Network. Adv. Mater. 2018, 30, 1870007. [Google Scholar] [CrossRef] [Green Version]
- Stammen, J.A.; Williams, S.; Ku, D.N.; Guldberg, R.E. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 2001, 22, 799–806. [Google Scholar] [CrossRef]
- Markolf, K.L.; Morris, J.M. The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces. J. Bone Jt. Surg. 1974, 56, 675–687. [Google Scholar] [CrossRef]
- Keller, T.S.; Spengler, D.M.; Hansson, T.H. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading. J. Orthop. Res. 1987, 5, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Beckstein, J.C.; Sen, S.; Schaer, T.P.; Vresilovic, E.J.; Elliott, D.M. Comparison of animal discs used in disc research to human lumbar disc: Axial compression mechanics and glycosaminoglycan content. Spine 2008, 33, E166–E173. [Google Scholar] [CrossRef] [PubMed]
- Meyers, M.A.; Chawla, K.K. Mechanial Behavior of Materials; Prentice-Hall: Upper Saddle River, NJ, USA, 1999; pp. 98–103. [Google Scholar]
- McCrum, N.G.; Buckley, C.P.; Bucknell, C.B. Principles of Polymer Engineering; Oxford University Press: New York, NY, USA, 2003; pp. 117–176. [Google Scholar]
- Mow, V.C.; Proctor, C.S.; Kelly, M.A. Biomechanics of articular cartilage. In Basic Biomechanics of the Musculoskeletal System, 2nd ed.; Chapter 2; Wiley: Hoboken, NJ, USA, 1989; pp. 31–54. [Google Scholar]
- Virgin, W.J. Experimental investigations into the physical properties of the intervertebral disc. J. Bone Joint Surg. Br. 1951, 33, 607–611. [Google Scholar] [CrossRef]
- Cloyd, J.M.; Malhotra, N.R.; Weng, L.; Chen, W.; Mauck, R.L.; Elliott, D.M. Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffolds. Eur. Spine J. 2007, 16, 1892–1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auriemma, F.; De Rosa, C.; Ricciardi, R.; Celso, F.L.; Triolo, R.; Pipich, V. Time-Resolving Analysis of Cryotropic Gelation of Water/Poly(vinyl alcohol) Solutions via Small-Angle Neutron Scattering. J. Phys. Chem. B 2008, 112, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhao, J.; Koshut, W.J.; Watt, J.; Riboh, J.C.; Gall, K.; Wiley, B.J. A Synthetic Hydrogel Composite with the Mechanical Behavior and Durability of Cartilage. Adv. Funct. Mater. 2020, 30, 2003451. [Google Scholar] [CrossRef]
- Lin, B.; Hu, H.; Deng, Z.; Pang, L.; Jiang, H.; Wang, D.; Zeng, X. Novel bioactive glass cross-linked PVA hydrogel with enhanced chondrogenesis properties and application in mice chondrocytes for cartilage repair. J. Non-Cryst. Solids 2020, 529, 119594. [Google Scholar] [CrossRef]
- Luo, X.; Akram, M.Y.; Yuan, Y.; Nie, J.; Zhu, X. Silicon dioxide/poly(vinyl alcohol) composite hydrogels with high mechanical properties and low swellability. J. Appl. Polym. Sci. 2019, 136, 46895. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Li, H.; Qi, Z.; Yin, M.; Wu, C.; Zhang, W. Effects of Freezing Thawing Cycles on Mechanical Strength of Poly(vinyl alcohol) Hydrogels; Springer: Singapore, 2020. [Google Scholar]
- Li, H.; Wu, C.W.; Wang, S.; Zhang, W. Mechanically strong poly (vinyl alcohol) hydrogel with macropores and high porosity. Mater. Lett. 2020, 266, 127504. [Google Scholar] [CrossRef]
- Elliott, D.M.; Sarver, J.J. Validation of the Mouse and Rat Disc as Mechanical Models of the Human Lumbar Disc. Spine 2004, 29, 713–722. [Google Scholar] [CrossRef]
- Oravec, D.; Kim, W.; Flynn, M.J.; Yeni, Y.N. The relationship of whole human vertebral body creep to geometric, microstructural, and material properties. J. Biomech. 2018, 73, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Van Der Veen, A.J.; Mullender, M.G.; Kingma, I.; Smit, T.H. Contribution of verftebral bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments. J. Biomech. 2008, 41, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.S.; Seidi, O.; Ribeiro, N.; Colaço, R.; Serro, A.P. Tribomechanical Comparison between PVA Hydrogels Obtained Using Different Processing Conditions and Human Cartilage. Materials 2019, 12, 3413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, C.; Ward, J.; Peppas, N. Modeling of crystal dissolution of poly(vinyl alcohol) gels produced by freezing/thawing processes. Polymer 2000, 41, 6729–6739. [Google Scholar] [CrossRef]
- Hassan, C.M.; Peppas, N.A. Structure and Morphology of Freeze/Thawed PVA Hydrogels. Macromolecules 2000, 33, 2472–2479. [Google Scholar] [CrossRef]
- Newell, N.; Little, J.P.; Christou, A.; Adams, M.; Adam, C.; Masouros, S. Biomechanics of the human intervertebral disc: A review of testing techniques and results. J. Mech. Behav. Biomed. Mater. 2017, 69, 420–434. [Google Scholar] [CrossRef]
- Silverman, H.G.; Roberto, F.F. Understanding Marine Mussel Adhesion. Mar. Biotechnol. 2007, 9, 661–681. [Google Scholar] [CrossRef] [Green Version]
- Ahn, B.K.; Das, S.; Linstadt, R.; Kaufman, Y.; Martinez-Rodriguez, N.R.; Mirshafian, R.; Waite, J.H. High-performance mussel-inspired adhesives of reduced complexity. Nat. Commun. 2015, 6, 8663. [Google Scholar] [CrossRef]
- Sun, J.; Su, J.; Ma, C.; Göstl, R.; Herrmann, A.; Liu, K.; Zhang, H. Fabrication and Mechanical Properties of Engineered Protein-Based Adhesives and Fibers. Adv. Mater. 2020, 32, 1906360. [Google Scholar] [CrossRef]
Specimen | Compressive Stiffness (N/mm) | Step Displacement (mm) | Creep Displacement (mm) |
---|---|---|---|
15% PVA+2 g BC (3FTCs) | 64.23 (6.39) | 3.925 (0.36) | 1.035 (0.05) |
15% PVA+4 g BC (3FTCs) | 85.66 (4.96) | 2.94 (0.16) | 1.57 (0.25) |
15% PVA+4 g BC (6FTCs) | 79.90 (0.61) | 3.12 (0.03) | 1.96 (0.37) |
20% PVA+2 g BC (3FTCs) | 66.46 (10.46) | 3.83 (0.64) | 1.07 (0.25) |
25% PVA+2 g BC (3FTCs) | 67.62 (6.77) | 3.76 (0.36) | 0.97 (0.02) |
30% PVA+2 g BC (3FTCs) | 63.06 (2.01) | 3.99 (0.14) | 0.99 (0.12) |
35% PVA+2 g BC (3FTCs) | 87.52 (3.59) | 2.85 (0.13) | 0.82 (0.18) |
40% PVA+2 g BC (3FTCs) | 123.48 (4.79) | 2.04 (0.08) | 0.53 (0.18) |
40% PVA+6 g BC (3FTCs) | 117.25 (1.32) | 2.15 (0.02) | 0.70 (0.01) |
40% PVA+6 g BC (6FTCs) | 111.77 (20.15) | 2.28 (0.42) | 0.81 (0.16) |
Specimen | Normalised Compressive Stiffness (MPa) | Normalised Step Displacement | Normalised Creep Displacement |
---|---|---|---|
15% PVA+2 g BC (3FTCs) | 1.82 (0.18) | 0.20 (0.02) | 0.05 (0.00) |
15% PVA+4 g BC (3FTCs) | 2.42 (0.14) | 0.15 (0.01) | 0.08 (0.01) |
15% PVA+4 g BC (6FTCs) | 2.26 (0.02) | 0.16 (0.00) | 0.10 (0.02) |
20% PVA+2 g BC (3FTCs) | 1.88 (0.30) | 0.19 (0.03) | 0.05 (0.01) |
25% PVA+2 g BC (3FTCs) | 1.91 (0.19) | 0.19 (0.02) | 0.05 (0.00) |
30% PVA+2 g BC (3FTCs) | 1.79 (0.06) | 0.20 (0.01) | 0.05 (0.01) |
35% PVA+2 g BC (3FTCs) | 2.48 (0.10) | 0.14 (0.01) | 0.04 (0.01) |
40% PVA+2 g BC (3FTCs) | 3.50 (0.14) | 0.10 (0.00) | 0.03 (0.01) |
40% PVA+6 g BC (3FTCs) | 3.32 (0.04) | 0.11 (0.00) | 0.04 (0.00) |
40% PVA+6 g BC (6FTCs) | 3.16 (0.57) | 0.11 (0.02) | 0.04 (0.01) |
Group | Trial group(MEM + PVA-BC) | Blank control group(MEM) | Positive control group (MEM+DMSO) |
---|---|---|---|
Absorbance | 0.847 (0.117) | 0.826 (0.070) | 0.304 (0.030) |
Cell viability (%) | 102.604 (14.136) | - | 36.839 (3.639) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Xiang, D.; Chen, Y.; Cui, Y.; Wang, S.; Liu, W. An Artificial PVA-BC Composite That Mimics the Biomechanical Properties and Structure of a Natural Intervertebral Disc. Materials 2022, 15, 1481. https://doi.org/10.3390/ma15041481
Yang M, Xiang D, Chen Y, Cui Y, Wang S, Liu W. An Artificial PVA-BC Composite That Mimics the Biomechanical Properties and Structure of a Natural Intervertebral Disc. Materials. 2022; 15(4):1481. https://doi.org/10.3390/ma15041481
Chicago/Turabian StyleYang, Mengying, Dingding Xiang, Yuru Chen, Yangyang Cui, Song Wang, and Weiqiang Liu. 2022. "An Artificial PVA-BC Composite That Mimics the Biomechanical Properties and Structure of a Natural Intervertebral Disc" Materials 15, no. 4: 1481. https://doi.org/10.3390/ma15041481
APA StyleYang, M., Xiang, D., Chen, Y., Cui, Y., Wang, S., & Liu, W. (2022). An Artificial PVA-BC Composite That Mimics the Biomechanical Properties and Structure of a Natural Intervertebral Disc. Materials, 15(4), 1481. https://doi.org/10.3390/ma15041481