A Comparative Study on the Shear Behavior of UHPC Beams with Macro Hooked-End Steel Fibers and PVA Fibers
Abstract
:1. Introduction
2. Experimental Program
2.1. UHPC Materials
2.2. Structural Beams
3. Experimental Results
3.1. Failure Pattern of the UHPC Beams
3.2. Load Versus Deflection Curves
4. Discussion
4.1. Shear Cracking Strength
4.2. Peak Shear Strength
4.3. Average Crack Spacing
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romualdi, J.P.; Mandel, J.A. Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement. J. Proc. 1964, 61, 657–672. [Google Scholar]
- Batson, G.; Jenkins, E.; Spatney, R. Steel fibers as shear reinforcement in beams. J. Proc. 1972, 69, 640–644. [Google Scholar]
- Narayanan, R.; Darwish, I. Use of steel fibers as shear reinforcement. Struct. J. 1987, 84, 216–227. [Google Scholar]
- Vamdewalle, M.I.; Mortelmans, F. Shear capacity of steel fiber high-strength concrete beams. Spec. Publ. 1994, 149, 227–242. [Google Scholar]
- Khuntia, M.; Stojadinovic, B.; Goel, S.C. Shear strength of normal and high-strength fiber reinforced concrete beams without stirrups. Struct. J. 1999, 96, 282–289. [Google Scholar]
- Kwak, Y.-K.; Eberhard, M.O.; Kim, W.-S.; Kim, J. Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Struct. J. 2002, 99, 530–538. [Google Scholar]
- Parra-Montesinos, G.J. Shear strength of beams with deformed steel fibers. Concr. Int. 2006, 28, 57–66. [Google Scholar]
- Gandomi, A.H.; Alavi, A.H.; Yun, G.J. Nonlinear modeling of shear strength of SFRC beams using linear genetic programming. Struct. Eng. Mech. 2011, 38, 1–25. [Google Scholar] [CrossRef]
- Arslan, G. Shear strength of steel fiber reinforced concrete (SFRC) slender beams. KSCE J. Civil Eng. 2014, 18, 587–594. [Google Scholar]
- Naaman, A.E.; Wille, K. The path to ultra-high performance fiber reinforced concrete (UHP-FRC): Five decades of progress. Proc. Hipermat 2012, 3–15. [Google Scholar]
- Association Francaise de Genie Civil (AFGC). Scientific and Technical Document on Recommendations for Ultra High Performance Fibre-Reinforced Concrete, Revised Edition; Association Francaise de Genie Civil (AFGC): Paris, France, 2013. [Google Scholar]
- Wille, K.; El-Tawil, S.; Naaman, A.E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cem. Concr. Compos. 2014, 48, 53–66. [Google Scholar] [CrossRef]
- Hung, C.-C.; Kuo, C.-W.; Shao, Y. Cast-in-place and prefabricated UHPC jackets for retrofitting shear-deficient RC columns with different axial load levels. J. Build. Eng. 2021, 41, 103305. [Google Scholar]
- ACI Committee 239. ACI PRC-239-18: Ultra-High Performance Concrete: An Emerging Technology Report; American Concrete Institute: Farmington Hills, MI, USA, 2018; pp. 1–21. ISBN 9781641950343. [Google Scholar]
- Hung, C.-C.; Li, H.; Chen, H.-C. High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications. Eng. Struct. 2017, 141, 59–74. [Google Scholar] [CrossRef]
- Hung, C.-C.; Hu, F.-Y.; Yen, C.-H. Behavior of slender UHPC columns under eccentric loading. Eng. Struct. 2018, 174, 701–711. [Google Scholar] [CrossRef]
- Hung, C.-C.; Lee, H.-S.; Chan, S.N. Tension-stiffening effect in steel-reinforced UHPC composites: Constitutive model and effects of steel fibers, loading patterns, and rebar sizes. Compos. Part B Eng. 2019, 158, 269–278. [Google Scholar]
- Hung, C.-C.; Chen, Y.-T.; Yen, C.-H. Workability, fiber distribution, and mechanical properties of UHPC with hooked end steel macro-fibers. Constr. Build. Mater. 2020, 260, 119944. [Google Scholar] [CrossRef]
- Hung, C.-C.; El-Tawil, S.; Chao, S.-H. A review of developments and challenges for UHPC in structural engineering: Behavior, analysis, and design. J. Struct. Eng. 2021, 147, 03121001. [Google Scholar]
- Graybeal, B.A. Material Property Characterization of Ultra-High Performance Concrete; United States Federal Highway Administration: McLean, VA, USA, 2006. [Google Scholar]
- El-Tawil, S.; Tai, Y.; Belcher, J.A. Field application of nonproprietary ultra-high-performance concrete. Concr. Int. 2018, 40, 36–42. [Google Scholar]
- Lawler, J.S.; Tadros, M.K.; Lampton, M.; Wagner, E.N. Development of Non-Proprietary UHPC for Florida Precast Applications. In Proceedings of the International Interactive Symposium on Ultra-High Performance Concrete, Albany, NY, USA, 2–5 June 2019. [Google Scholar]
- El-Tawil, S.; Tai, Y.-S.; Belcher II, J.A.; Rogers, D. Open-Recipe Ultra-High-Performance Concrete. Concr. Int. 2020, 42, 33–38. [Google Scholar]
- Baby, F.; Billo, J.; Renaud, J.C.; Massotte, C.; Marchand, P.; Toutlemonde, F.; Simon, A.; Lussou, P. Shear resistance of ultra high performance fibre-reinforced concrete I-beams. Fract. Mech. Concr. Concr. Struct.—High Perform. Fiber Reinf. Concr. Spec. Load. Struct. Appl. 2010, 1411–1417. [Google Scholar]
- Voo, Y.L.; Poon, W.K.; Foster, S.J. Shear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups. J. Struct. Eng. 2010, 136, 1393–1400. [Google Scholar] [CrossRef]
- Cauberg, N.; Piérard, J.; Parmentier, B.; Remy, O. Shear Capacity of UHPC-Beam Tests. Proc. Hipermat 2012, 451–458. [Google Scholar]
- Fehling, E.; Thiemicke, J. Experimental Investigation on I-Shaped UHPC-Beams with Combined Reinforcement under Shear Load. Proc. Hipermat 2012, 477–484. [Google Scholar]
- Yang, I.-H.; Joh, C.; Kim, B.-S. Shear behaviour of ultra-high-performance fibre-reinforced concrete beams without stirrups. Mag. Concr. Res. 2012, 64, 979–993. [Google Scholar] [CrossRef]
- Aziz, O.Q.; Ali, M.H. Shear strength and behavior of ultra-high performance fiber reinforced concrete (UHPC) deep beams without web reinforcement. Int. J. Civil Eng. Struct. 2013, 2, 85–96. [Google Scholar]
- Bae, B.I.; Choi, H.K.; Choi, C.S. Flexural and Shear Capacity Evaluation of Reinforced Ultra-High Strength Concrete Members with Steel Rebars. Key Eng. Mater. 2013, 577–578, 17–20. [Google Scholar] [CrossRef]
- Baby, F.; Marchand, P.; Toutlemonde, F. Shear Behavior of Ultrahigh Performance Fiber-Reinforced Concrete Beams. I: Experimental Investigation. J. Struct. Eng. 2014, 140, 04013111. [Google Scholar] [CrossRef]
- Lim, W.-Y.; Hong, S.-G. Shear Tests for Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) Beams with Shear Reinforcement. Int. J. Concr. Struct. Mater. 2016, 10, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Zagon, R.; Matthys, S.; Kiss, Z. Shear behaviour of SFR-UHPC I-shaped beams. Constr. Build. Mater. 2016, 124, 258–268. [Google Scholar] [CrossRef]
- Pansuk, W.; Nguyen, T.N.; Sato, Y.; Den Uijl, J.A.; Walraven, J.C. Shear capacity of high performance fiber reinforced concrete I-beams. Constr. Build. Mater. 2017, 157, 182–193. [Google Scholar] [CrossRef]
- Qi, J.; Ma, Z.J.; Wang, J. Shear Strength of UHPFRC Beams: Mesoscale Fiber-Matrix Discrete Model. J. Struct. Eng. 2017, 143. [Google Scholar] [CrossRef]
- Hong, S.-G.; Hong, N.; Lee, J.-h. Shear Strength of UHPFRC Beams Without Stirrups: Fracture Mechanics Approach. In Proceedings of the High Tech Concrete: Where Technology and Engineering Meet, Maastricht, The Netherlands, 12–14 June 2018; pp. 447–455. [Google Scholar]
- Kodur, V.; Solhmirzaei, R.; Agrawal, A.; Aziz, E.M.; Soroushian, P. Analysis of flexural and shear resistance of ultra high performance fiber reinforced concrete beams without stirrups. Eng. Struct. 2018, 174, 873–884. [Google Scholar] [CrossRef]
- Mészöly, T.; Randl, N. Shear behavior of fiber-reinforced ultra-high performance concrete beams. Eng. Struct. 2018, 168, 119–127. [Google Scholar] [CrossRef]
- Pourbaba, M.; Joghataie, A.; Mirmiran, A. Shear behavior of ultra-high performance concrete. Constr. Build. Mater. 2018, 183, 554–564. [Google Scholar] [CrossRef]
- Pourbaba, M.; Joghataie, A. Determining Shear Capacity of Ultra-high Performance Concrete Beams by Experiments and Comparison with Codes. Sci. Iran. 2019, 26, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Yavaş, A.; Hasgul, U.; Turker, K.; Birol, T. Effective fiber type investigation on the shear behavior of ultrahigh-performance fiber-reinforced concrete beams. Adv. Struct. Eng. 2019, 22, 1591–1605. [Google Scholar] [CrossRef]
- Wang, Q.; Song, H.-L.; Lu, C.-L.; Jin, L.-Z. Shear performance of reinforced ultra-high performance concrete rectangular section beams. Structures 2020, 27, 1184–1194. [Google Scholar] [CrossRef]
- Yavas, A.; Goker, C.O. Impact of Reinforcement Ratio on Shear Behavior of I-Shaped UHPC Beams with and without Fiber Shear Reinforcement. Materials 2020, 13, 1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, V.C. From Micromechanics to Structural Engineering-the Design of Cementitious Composites for Civil Engineering Applications. JSCE J. Struct. Mech. Earthq. Eng. 1993, 10, 37–48. [Google Scholar]
- Hung, C.-C.; Su, Y.-F.; Su, Y.-M. Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Compos. Part B Eng. 2018, 133, 15–25. [Google Scholar]
- Li, V.C.; Wang, S.; Wu, C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). Mater. J. 2001, 98, 483–492. [Google Scholar]
- Li, V.C. Tailoring ECC for Special Attributes: A Review. Int. J. Concr. Struct. Mater. 2012, 6, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.-C.; Chen, Y.-S. Innovative ECC jacketing for retrofitting shear-deficient RC members. Constr. Build. Mater. 2016, 111, 408–418. [Google Scholar] [CrossRef]
- Hung, C.-C.; Su, Y.-F. Medium-term self-healing evaluation of engineered cementitious composites with varying amounts of fly ash and exposure durations. Constr. Build. Mater. 2016, 118, 194–203. [Google Scholar] [CrossRef]
- Li, V.C. Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable and Resilient Infrastructure; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-662-58437-8. [Google Scholar]
- Huang, B.-T.; Weng, K.-F.; Zhu, J.-X.; Xiang, Y.; Dai, J.-G.; Li, V.C. Engineered/strain-hardening cementitious composites (ECC/SHCC) with an ultra-high compressive strength over 210 MPa. Compos. Commun. 2021, 26, 100775. [Google Scholar] [CrossRef]
- Wu, Z.; Khayat, K.H.; Shi, C. How do fiber shape and matrix composition affect fiber pullout behavior and flexural properties of UHPC? Cem. Concr. Compos. 2018, 90, 193–201. [Google Scholar]
- Yoo, D.Y.; Kim, S. Comparative pullout behavior of half-hooked and commercial steel fibers embedded in UHPC under static and impact loads. Cem. Concr. Compos. 2019, 97, 89–106. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Kang, S.T.; Yoon, Y.S. Enhancing the flexural performance of ultra-high-performance concrete using long steel fibers. Compos. Struct. 2016, 147, 220–230. [Google Scholar]
- Parra-Montesinos, G.J. High-performance fiber-reinforced cement composites: An alternative for seismic design of structures. ACI Struct. J. 2005, 102, 668. [Google Scholar]
- Hung, C.-C.; El-Tawil, S. Seismic behavior of a coupled wall system with HPFRC materials in critical regions. J. Struct. Eng. 2011, 137, 1499–1507. [Google Scholar] [CrossRef]
- Wille, K.; Naaman, A.E.; El-Tawil, S.; Parra-Montesinos, G.J. Ultra-high performance concrete and fiber reinforced concrete: Achieving strength and ductility without heat curing. Mater. Struct. 2012, 45, 309–324. [Google Scholar] [CrossRef]
- Athanasopoulou, A. Shear Strength and Drift Capacity of Reinforced Concrete and High-Performance Fiber Reinforced Concrete Low-Rise Walls Subjected to Displacement Reversals; University of Michigan: Ann Arbor, MI, USA, 2010. [Google Scholar]
- ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-19): An ACI Standard: Commentary on Building Code Requirements for Structural Concrete (ACI 874 318R-19); American Concrete Institute: Farmington Hills, MI, USA, 2019; ISBN 978-1641950565. [Google Scholar]
- Dinh, H.H. Shear Behavior of Steel Fiber Reinforced Concrete Beams without Stirrup Reinforcement; University of Michigan: Ann Arbor, MI, USA, 2009. [Google Scholar]
Matrix | Cementitious Materials | Silica Sand | Silica Powder | Water | Superplasticizer |
---|---|---|---|---|---|
Ratio | 1.00 | 0.50 | 0.40 | 0.23 | 0.02 |
Fiber | Diameter | Length | Aspect Ratio | Young’s Modulus | Tensile Strength | Density (kg/m3) |
---|---|---|---|---|---|---|
MHS | 0.38 mm | 30 mm | 79 | 200 GPa | 3070 MPa | 7800 |
PVA | 0.038 mm | 8 mm | 210 | 41 GPa | 1600 MPa | 1300 |
Beam | a/d | Fiber Volume Fraction (Vf) | f’c (MPa) | ft (MPa) |
---|---|---|---|---|
S - 0F | 1.5 | 0% Fiber | 119 | N/A |
S - 75SF | 1.5 | 0.75% SF | 112 | 3.2 |
S - 150SF | 1.5 | 1.50% SF | 124 | 6.4 |
S - 75PVA | 1.5 | 0.75% PVA | 112 | 2.1 |
S - 225PVA | 1.5 | 2.25% PVA | 105 | 4.4 |
L - 0F | 3.3 | 0% Fiber | 95 | N/A |
L - 75SF | 3.3 | 0.75% SF | 117 | 2.4 |
L - 150SF | 3.3 | 1.50% SF | 103 | 4.0 |
L - 75PVA | 3.3 | 0.75% PVA | 115 | 1.6 |
L - 225PVA | 3.3 | 2.25% PVA | 94 | 5.9 |
Structural Beam | γcr (rad) | γPeak (rad) | N | H (mm) | S (mm) | ϴ | ||||
---|---|---|---|---|---|---|---|---|---|---|
S - 0F | 2.9 | 0.25 | 0.0010 | 8.4 | 0.77 | 0.0043 | 42 | 183 | 4 | 41 |
S - 75SF | 3.3 | 0.30 | 0.0009 | 12.3 | 1.16 | 0.0064 | 47 | 135 | 3 | 46 |
S - 150SF | 9.6 | 0.86 | 0.0023 | 15.8 | 1.41 | 0.0067 | 40 | 203 | 5 | 39 |
S - 75PVA | 2.9 | 0.27 | 0.0005 | 10.3 | 0.97 | 0.0060 | 35 | 264 | 8 | 49 |
S -225PVA | 6.7 | 0.66 | 0.0016 | 11.6 | 1.13 | 0.0054 | 44 | 266 | 6 | 39 |
L - 0F | 1.7 | 0.18 | 0.0007 | 1.8 | 0.18 | 0.0011 | 88 | 751 | 9 | 37 |
L - 75SF | 5.4 | 0.50 | 0.0037 | 6.7 | 0.62 | 0.0066 | 80 | 713 | 9 | 28 |
L - 150SF | 5.8 | 0.56 | 0.0033 | 7.9 | 0.76 | 0.0070 | 45 | 679 | 15 | 37 |
L - 75PVA | 2.9 | 0.27 | 0.0015 | 3.1 | 0.29 | 0.0023 | 31 | 674 | 22 | 37 |
L - 225PVA | 4.0 | 0.41 | 0.0017 | 6.1 | 0.62 | 0.0046 | 67 | 663 | 10 | 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bermudez, M.; Wen, K.-W.; Hung, C.-C. A Comparative Study on the Shear Behavior of UHPC Beams with Macro Hooked-End Steel Fibers and PVA Fibers. Materials 2022, 15, 1485. https://doi.org/10.3390/ma15041485
Bermudez M, Wen K-W, Hung C-C. A Comparative Study on the Shear Behavior of UHPC Beams with Macro Hooked-End Steel Fibers and PVA Fibers. Materials. 2022; 15(4):1485. https://doi.org/10.3390/ma15041485
Chicago/Turabian StyleBermudez, Manuel, Kuo-Wei Wen, and Chung-Chan Hung. 2022. "A Comparative Study on the Shear Behavior of UHPC Beams with Macro Hooked-End Steel Fibers and PVA Fibers" Materials 15, no. 4: 1485. https://doi.org/10.3390/ma15041485
APA StyleBermudez, M., Wen, K. -W., & Hung, C. -C. (2022). A Comparative Study on the Shear Behavior of UHPC Beams with Macro Hooked-End Steel Fibers and PVA Fibers. Materials, 15(4), 1485. https://doi.org/10.3390/ma15041485