Research on Hot Corrosion Behavior of DZ40M and K452 Superalloys in NaCl Molten Salt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isothermal Oxidation and Corrosion Exposure Test
3. Results
3.1. Oxidation and Corrosion Kinetics
3.2. Macro-Morphology of Corroded Surface
3.3. Oxidation and Corrosion Product Composition
3.4. Micro-Morphology and Composition of Surface
3.5. Cross-Sectional Morphology and Composition
3.6. Roughness
4. Discussion
4.1. Mechanism of NaCl-Induced Hot Corrosion
4.1.1. Alkaline Dissolution of Na2O
4.1.2. The Role of Cl
4.2. Differences in Hot Corrosion Behavior between DZ40M and K452
4.2.1. The Effect of Higher Content of C, Cr, W in DZ40M
4.2.2. The Effect of Higher Content of Al and Ti in K452
5. Conclusions
- (1)
- NaCl and O2 form alkaline component Na2O at high temperature, which makes Cr2O3 loose and porous through the process of alkali solution, dissolution, and reprecipitation, leading to poor protection. Coupled with the cyclic effect of Cl, the structure and composition of the corrosion product film are changed, and the corrosion of the alloy is accelerated.
- (2)
- DZ40M has a high C, Cr, and W elements content and generates plenty of loose and porous Cr2O3, which can not protect the matrix from severe hot corrosion.
- (3)
- K452 produces Al2O3 and TiO2 with its high content of Al and Ti. It has a specific resistance to alkaline dissolution of Na2O, effectively preventing the diffusion of corrosive elements and lighter the degree of hot corrosion. However, due to a large amount of internal oxidation of Al in the later stage, the surface flatness deteriorates sharply, and the considerable depth of pitting pits causes stress concentration directly, which affects the mechanical properties of K452.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, F.; Yang, L.; Zhou, Y. Study Advances of High Temperature Coating for Aeroengine to resist Marine Atmospheric Corrosion. Therm. Spray Technol. 2019, 11, 1–9+15. [Google Scholar]
- Bu, J.; Gao, Z.; Han, Z.; Liu, M.; Niu, J. Cracking Analysis of Low Pressure Turbine Guide Blade of Engine. Fail. Anal. Prev. 2020, 15, 179–190. [Google Scholar]
- Sun, Z.; Chen, X.; Zhang, L.; Zhang, S.; Feng, J. Experimental and Numerical Study of Transient Liquid Phase Diffusion Bonded DZ40M Superalloys. Crystals 2021, 11, 479. [Google Scholar] [CrossRef]
- Duan, C.Y.; Liu, P.S.; Qing, H.B. High temperature oxidation performance investigation on the activation energy of a Co-base superalloy oxidized in air. Mater. Lett. 2021, 283, 128792. [Google Scholar] [CrossRef]
- Li, J.; Yuan, C.; Guo, J.; Hou, J.; Zhou, L. Effect of hot isostatic pressing on microstructure of cast gas-turbine vanes of K452 alloy. Prog. Nat. Sci. Mater. Int. 2014, 24, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Peng, J. Four hot corrosion resistant materials for IGT blades. Procedia Eng. 2015, 130, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Liu, G.; Zhuo, X.; Zhang, X.; Feng, J.; Jiang, W.; Jiang, Y.; Yin, J.; He, B.; Hu, Y.; et al. In-situ reaction synthesis Al2O3 overlay modified 7YSZ TBC for NaCl hot corrosion. Ceram. Int. 2021, 47, 22404–22415. [Google Scholar] [CrossRef]
- Yu, X.; Song, P.; He, X.; Khan, A.; Huang, T.; Li, C.; Li, Q.; Lü, K.; Chen, K.; Lu, J. Influence of the combined-effect of NaCl and Na2SO4 on the hot corrosion behaviour of aluminide coating on Ni-based alloys. J. Alloy. Compd. 2019, 790, 228–239. [Google Scholar] [CrossRef]
- Prabhakaran, D.; Jegadeeswaran, N.; Somasundaram, B.; Raju, B.S. Corrosion resistance by HVOF coating on gas turbine materials of cobalt based superalloy. Mater. Today Proc. 2020, 20, 173–176. [Google Scholar] [CrossRef]
- Hu, S.; Finklea, H.; Liu, X. A review on molten sulfate salts induced hot corrosion. J. Mater. Sci. Technol. 2021, 90, 243–254. [Google Scholar] [CrossRef]
- Balashadehi, M.M.; Nourpour, P.; Aghdam, A.S.R.; Allahyarzadeh, M.H.; Heydarzadeh, A.; Hamdi, M. The formation, microstructure and hot corrosion behaviour of slurry aluminide coating modified by Ni/Ni-Co electrodeposited layer on Ni-base superalloy. Surf. Coat. Technol. 2020, 402, 126283. [Google Scholar] [CrossRef]
- Fu, G.Y.; Zhao, X.; Liu, Q.; Su, Y. Hot Corrosion of Cobalt-Based Alloy with (Na, K)2SO4 Coating at 900 °C. Adv. Mater. Res. 2011, 194–196, 1305–1308. [Google Scholar]
- Fu, G.; Li, J.; Liu, Q. Hot Corrosion of Ni-based Alloys with Na2SO4 Coating at 900 °C. J. Shenyang Univ. Chem. Technol. 2013, 27, 353–357. [Google Scholar]
- Zhang, J.; Zhang, Q.; Zhuang, Y.; Kovalenko, V.; Yao, J. Microstructures and cyclic hot corrosion behavior of laser deposited Inconel 718 alloy under different heat treatment conditions. Opt. Laser Technol. 2021, 135, 106659. [Google Scholar] [CrossRef]
- Mu, M.; Li, J.; Shen, J.; Sun, Q.; Wang, Z. Analysis and research on quality of exported aviation kerosene. Refin. Chem. Ind. 2018, 29, 63–66. [Google Scholar]
- Cho, S.H.; Kwon, S.C.; Kim, D.Y.; Choi, W.S.; Kim, Y.S.; Lee, J.H. Hot Corrosion Behaviour of Nickel-Cobalt-Based Alloys in a Lithium Molten Salt. Corros. Sci. 2019, 151, 20–26. [Google Scholar] [CrossRef]
- Liu, B.; Wei, X.; Wang, W.; Lu, J.; Ding, J. Corrosion behavior of Ni-based alloys in molten NaCl-CaCl2-MgCl2 eutectic salt for concentrating solar power. Sol. Energy Mater. Sol. Cells 2017, 170, 77–86. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.; Li, Z.; Zhang, P.; Su, X. Corrosion behavior of 316SS and Ni-based alloys in a ternary NaCl-KCl-MgCl2 molten salt. Sol. Energy 2018, 171, 320–329. [Google Scholar] [CrossRef]
- Garces, H.F.; Tran, A.; Sternlicht, H.; Miller, M.; Resnick, M.; Marino, S.; Choi, W.B.; Padture, N.P. Sea-salt-induced moderate-temperature degradation of thermally-sprayed MCrAlY bond-coats. Surf. Coat. Technol. 2020, 404, 126459. [Google Scholar] [CrossRef]
- Wei, L.; Shao, W.; Li, M.; Zhou, C. Hot corrosion behaviour of Mo-62Si-5B (at. %) alloy in different molten salts at 900 °C. Corros. Sci. 2019, 158, 108099. [Google Scholar] [CrossRef]
- Yang, Y.F.; Liu, Z.L.; Ren, P.; Wang, Q.W.; Bao, Z.B.; Zhu, S.L.; Li, W. Hot corrosion behavior of Pt+Hf co-modified NiAl coating in the mixed salt of Na2SO4-NaCl at 900 °C. Corros. Sci. 2020, 167, 108527. [Google Scholar] [CrossRef]
Elements | C | Cr | Ni | Co | W | Ti | Al |
---|---|---|---|---|---|---|---|
Contents | 0.5 | 25.0 | 10.5 | 52.0 | 7.5 | 0.3 | 1.2 |
Elements | C | Cr | Ni | Co | W | Ti | Al |
---|---|---|---|---|---|---|---|
Contents | 0.11 | 21.0 | 56.5 | 11.2 | 3.5 | 3.5 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, L.; Zhang, Z.; Wang, W.; Xue, Y.; Shen, J.; Sun, T.; Sun, H. Research on Hot Corrosion Behavior of DZ40M and K452 Superalloys in NaCl Molten Salt. Materials 2022, 15, 1512. https://doi.org/10.3390/ma15041512
Wan L, Zhang Z, Wang W, Xue Y, Shen J, Sun T, Sun H. Research on Hot Corrosion Behavior of DZ40M and K452 Superalloys in NaCl Molten Salt. Materials. 2022; 15(4):1512. https://doi.org/10.3390/ma15041512
Chicago/Turabian StyleWan, Lei, Zeyu Zhang, Wenquan Wang, Yunpeng Xue, Jubao Shen, Tao Sun, and Haiou Sun. 2022. "Research on Hot Corrosion Behavior of DZ40M and K452 Superalloys in NaCl Molten Salt" Materials 15, no. 4: 1512. https://doi.org/10.3390/ma15041512
APA StyleWan, L., Zhang, Z., Wang, W., Xue, Y., Shen, J., Sun, T., & Sun, H. (2022). Research on Hot Corrosion Behavior of DZ40M and K452 Superalloys in NaCl Molten Salt. Materials, 15(4), 1512. https://doi.org/10.3390/ma15041512