A Composite Porous Membrane Based on Derived Cellulose for Transient Gel Electrolyte in Transient Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Composite Porous Membrane
2.2. Porosity Measurement and Liquid Electrolyte Uptake Ratio measurement
2.3. Microscopic Morphology Characterization
2.4. Mechanical Property Characterization
2.5. Transiency Characterization
2.6. Contact Angle Measurement
2.7. Ionic Conductivity Measurement
2.8. Full Cell Performance
3. Results and Discussion
3.1. Porous CPM
3.2. Morphology
3.3. Mechanical Properties
3.4. Porosity and Liquid Electrolyte Uptake Ratio
3.5. Wettability and Contact Angle
3.6. Transiency
3.7. Ionic Conductivity
3.8. Battery Performance
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Selvaraj, T.; Perumal, V.; Khor, S.F.; Anthony, L.S.; Gopinath, S.C.B.; Mohamed, N.M. The recent development of polysaccharides biomaterials and their performance for supercapacitor applications. Mater. Res. Bull. 2020, 126, 110839. [Google Scholar] [CrossRef]
- Li, C.; Guo, C.; Fitzpatrick, V.; Ibrahim, A.; Zwierstra, M.J.; Hanna, P.; Lechtig, A.; Nazarian, A.; Lin, S.J.; Kaplan, D.L. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 2020, 5, 61–81. [Google Scholar] [CrossRef]
- Feig, V.R.; Tran, H.; Bao, Z. Biodegradable polymeric materials in degradable electronic devices. ACS Cent. Sci. 2018, 4, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Shi, M.; Luo, Y.; Zhou, L.; Loh, Z.R.; Oon, Z.J.; Lian, X.; Wan, X.; Chong, F.B.L.; Tong, Y. Degradable and dissolvable thin-film materials for the applications of new-generation environmental-friendly electronic devices. Appl. Sci. 2020, 10, 1320. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Sun, L.; An, X.; Qian, X. Construction of flexible electrodes based on ternary polypyrrole@cobalt oxyhydroxide/cellulose fiber composite for supercapacitor. Carbohydr. Polym. 2020, 229, 115455. [Google Scholar] [CrossRef]
- Huang, X.; Wang, D.; Yuan, Z.; Xie, W.; Wu, Y.; Li, R.; Zhao, Y.; Luo, D.; Cen, L.; Chen, B.; et al. A Fully Biodegradable Battery for Self-Powered Transient Implants. Small 2018, 14, 1800994. [Google Scholar] [CrossRef]
- Tsang, M.; Armutlulu, A.; Martinez, A.W.; Allen, S.A.B.; Allen, M.G. Biodegradable magnesium/iron batteries with polycaprolactone encapsulation: A microfabricated power source for transient implantable devices. Microsyst. Nanoeng. 2015, 1, 15024. [Google Scholar] [CrossRef]
- Kim, Y.J.; Wu, W.; Chun, S.-E.; Whitacre, J.F.; Bettinger, C.J. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl. Acad. Sci. USA 2013, 110, 20912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, L.; Huang, X.; Xu, H.; Zhang, Y.; Lam, J.; Cheng, J.; Rogers, J.A. Materials, Designs, and Operational Characteristics for Fully Biodegradable Primary Batteries. Adv. Mater. 2014, 26, 3879. [Google Scholar] [CrossRef]
- Kim, Y.J.; Chun, S.-E.E.; Whitacre, J.; Bettinger, C.J. Self-deployable current sources fabricated from edible materials. J. Mater. Chem. B 2013, 1, 3781. [Google Scholar] [CrossRef]
- Chen, B.; Huang, X.; Wang, D.; Wu, H.; Li, R.; Xu, H.; Zhao, Y.; Luo, D.; Zhao, L.; Wu, Y.; et al. Biodegradable Batteries: A Fully Biodegradable Battery for Self-Powered Transient Implants (Small 28/2018). Small 2018, 14, 1870129. [Google Scholar]
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419. [Google Scholar] [CrossRef]
- Fu, K.; Wang, Z.; Yan, C.; Liu, Z.; Yao, Y.; Dai, J.; Hitz, E.; Wang, Y.; Luo, W.; Chen, Y.; et al. All-component transient lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1. [Google Scholar] [CrossRef]
- Esquivel, J.P.; Alday, P.; Ibrahim, O.A.; Fernández, B.; Kjeang, E.; Sabaté, N. A Metal—Free and Biotically Degradable Battery for Portable Single-Use Applications. Adv. Energy Mater. 2017, 7, 1700275. [Google Scholar] [CrossRef] [Green Version]
- Fu, K.; Liu, Z.; Yao, Y.; Wang, Z.; Zhao, B.; Luo, W.; Dai, J.; Lacey, S.D.; Zhou, L.; Shen, F.; et al. Transient rechargeable batteries triggered by cascade reactions. Nano Lett. 2015, 15, 4664. [Google Scholar] [CrossRef]
- Chen, Y.; Jamshidi, R.; White, K.; Çınar, S.; Gallegos, E.; Hashemi, N.; Montazami, R. Physical—Chemical hybrid transiency: A fully transient li-ion battery based on insoluble active materials. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 2021. [Google Scholar] [CrossRef]
- Dall’Asta, V.; Berbenni, V.; Mustarelli, P.; Ravelli, D.; Samorì, C.; Quartarone, E. A biomass-derived polyhydroxyalkanoate biopolymer as safe and environmental-friendly skeleton in highly efficient gel electrolytes for lithium batteries. Electrochim. Acta 2017, 247, 63. [Google Scholar] [CrossRef]
- Liu, B.; Huang, Y.; Cao, H.; Song, A.; Lin, Y.; Wang, M.; Li, X. A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane. J. Solid State Electrochem. 2018, 22, 807. [Google Scholar] [CrossRef]
- Fonseca, C.P.; Rosa, D.S.; Gaboardi, F.; Neves, S. Development of a biodegradable polymer electrolyte for rechargeable batteries. J. Power Sources 2006, 155, 381. [Google Scholar] [CrossRef]
- Zhao, L.; Su, Y.; Du, Z.; Yu, F.; Mo, Y.; Qu, Y.; Jia, X.; Chen, Y.; Du, J. A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochim. Acta 2019, 299, 19. [Google Scholar]
- Xiao, S.; Wang, F.; Yang, Y.; Chang, Z.; Wu, Y. An environmentally friendly and economic membrane based on cellulose as a gel polymer electrolyte for lithium ion batteries. RSC Adv. 2014, 4, 76. [Google Scholar] [CrossRef]
- Nirmale, T.C.; Karbhal, I.; Kalubarme, R.S.; Shelke, M.V.; Varma, A.J.; Kale, B.B. Facile synthesis of unique cellulose triacetate based flexible and high performance gel polymer electrolyte for lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 34773. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Wu, J.; Wang, Y.; Song, M.; Long, L.; Siyal, S.H.; Yang, X.; Sui, G. Recent Advances in Gel Polymer Electrolyte for High-Performance Lithium Batteries. J. Energy Chem. 2019, 37, 126. [Google Scholar] [CrossRef] [Green Version]
- Jabbour, L.; Bongiovanni, R.; Chaussy, D.; Gerbaldi, C.; Beneventi, D. Cellulose-based Li-ion batteries: A review. Cellulose 2013, 20, 1523. [Google Scholar] [CrossRef]
- Weng, B.; Xu, F.; Alcoutlabi, M.; Mao, Y.; Lozano, K. Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators. Cellulose 2015, 22, 1311. [Google Scholar] [CrossRef]
- Nair, J.R.; Gerbaldi, C.; Chiappone, A.; Zeno, E.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N. UV-cured polymer electrolyte membranes for Li-cells: Improved mechanical properties by a novel cellulose reinforcement. Electrochem. Commun. 2009, 11, 1796. [Google Scholar] [CrossRef]
- Lee, J.M.; Nguyen, D.Q.; Lee, S.B.; Kim, H.; Ahn, B.S.; Lee, H.; Kim, H.S. Cellulose triacetate—Based polymer gel electrolytes. Appl. Polym. Sci. 2010, 115, 32. [Google Scholar] [CrossRef]
- Ren, Z.; Liu, Y.; Sun, K.; Zhou, X.; Zhang, N. A microporous gel electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery. Electrochim. Acta 2009, 54, 1888. [Google Scholar] [CrossRef]
- Zhu, Y.S.; Xiao, S.Y.; Li, M.X.; Chang, Z.; Wang, F.X.; Gao, J.; Wu, Y.P. Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J. Power Sources 2015, 288, 368. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Y.; Montazami, R. Ionic liquid-doped gel polymer electrolyte for flexible lithium-ion polymer batteries. Materials 2015, 8, 2735. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Huang, C.I.; Lodge, T.P. Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 1999, 32, 7070. [Google Scholar] [CrossRef]
- Arora, P.; Zhang, Z. Battery separators. Chem. Rev. 2004, 104, 4419. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857. [Google Scholar] [CrossRef]
Code | CPM-0 | CPM-1 | CPM-2 | CPM-3 | CPM-4 | CPM-5 | CPM-6 | CPM-7 | CPM-8 | CPM-9 | CPM-10 |
---|---|---|---|---|---|---|---|---|---|---|---|
CMC | 100% | 99% | 98% | 97% | 96% | 95% | 94% | 93% | 92% | 91% | 90% |
MC | 0% | 1% | 2% | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, L.; Lin, L.; You, H. A Composite Porous Membrane Based on Derived Cellulose for Transient Gel Electrolyte in Transient Lithium-Ion Batteries. Materials 2022, 15, 1584. https://doi.org/10.3390/ma15041584
Chen Y, Zhang L, Lin L, You H. A Composite Porous Membrane Based on Derived Cellulose for Transient Gel Electrolyte in Transient Lithium-Ion Batteries. Materials. 2022; 15(4):1584. https://doi.org/10.3390/ma15041584
Chicago/Turabian StyleChen, Yuanfen, Lanbin Zhang, Lin Lin, and Hui You. 2022. "A Composite Porous Membrane Based on Derived Cellulose for Transient Gel Electrolyte in Transient Lithium-Ion Batteries" Materials 15, no. 4: 1584. https://doi.org/10.3390/ma15041584
APA StyleChen, Y., Zhang, L., Lin, L., & You, H. (2022). A Composite Porous Membrane Based on Derived Cellulose for Transient Gel Electrolyte in Transient Lithium-Ion Batteries. Materials, 15(4), 1584. https://doi.org/10.3390/ma15041584