PBF-EB of Fe-Cr-V Alloy for Wear Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. PBF-EB Processing
2.2. Heat Treatment
2.3. Characterization
2.3.1. Jet Wear Test
2.3.2. Impact Test
2.3.3. Final Field Test
3. Results and Discussion
3.1. Microstructural Analysis
3.2. Mechanical Properties
3.2.1. Three-Point Bending Test
3.2.2. Jet Wear Test
3.2.3. Impact Test
3.3. Physical Properties
3.3.1. Density
3.3.2. Thermal Conductivity
3.4. Field Test
4. Conclusions
- No significant difference was found between thick-walled and thin-walled PBF-EB structures with the microstructural analysis methods used in this study.
- EBSD and XRD revealed the main phases to be ferrite, VC, and Cr7C3. However, there was a significant fraction that could not be analyzed by the present measurements, indicating retained austenite, martensite, and small amounts of other carbides and imbalance phases.
- The as-built microstructure is fine grained with the majority of grains and carbides being submicron in size. The heat treatment has an effect mainly on the matrix structure and the formation of chromium carbides. The extent to which the composition of the chromium and vanadium-rich carbides change, as well as their correlation with the hardness values must be investigated in greater depth in the future.
- Vanadium-rich primary carbides partly form star-like agglomerates.
- Bending strength of heat-treated FeCr-10V is higher than 2000 MPa. Further investigations on the heat treatment accompanied by detailed microstructural and fracture analyses might give information about the influence of carbide formation on the ductility.
- The jet wear test resulted in a mass loss that was only 2/3 or even half that of the reference material. The reason, especially for the good durability in the as-built condition, is not yet understood. In the future, correlations among microstructure, beam angle, and the wear mechanisms at different angles must be further studied.
- Drop energy of heat-treated FeC10V lay in the range of that of the reference material. Further measurements have to be done for statistical relevance.
- Thermal properties are in accordance with the literature for cold work steels.
- Near-net-shape capsule for HIP using PBF-EB.
- In situ hard facing by the FeCr-10V, with varying wall thicknesses depending on the application.
- Core material of the capsule might be a more cost-effective material with higher toughness.
- Hybrid manufacturing leads to reduced PBF-EB printing times that are still a bottleneck for industrial production.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopez, E.; Brueckner, F.; Gruber, S. Industrial Applications. Fundamentals of Laser Powder Bed Fusion of Metals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 583–595. [Google Scholar] [CrossRef]
- Körner, C. Additive manufacturing of metallic components by selective electron beam melting—A review. Int. Mater. Rev. 2016, 61, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Ladani, L.; Sadeghilaridjani, M. Review of Powder Bed Fusion Additive Manufacturing for Metals. Metals 2021, 11, 1391. [Google Scholar] [CrossRef]
- Zadi-Maad, A.; Rohib, R.; Irawan, A. Additive manufacturing for steels: A review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 285, 12028. [Google Scholar] [CrossRef]
- Haghdadi, N.; Laleh, M.; Moyle, M.; Primig, S. Additive manufacturing of steels: A review of achievements and challenges. J. Mater. Sci. 2021, 56, 64–107. [Google Scholar] [CrossRef]
- Kempen, K.; Vrancken, B.; Buls, S.; Thijs, L.; van Humbeeck, J.; Kruth, J.-P. Selective Laser Melting of Crack-Free High Density M2 High Speed Steel Parts by Baseplate Preheating. J. Manuf. Sci. Eng. 2014, 136, 061026. [Google Scholar] [CrossRef]
- Sander, J.; Hufenbach, J.; Giebeler, L.; Wendrock, H.; Kühn, U.; Eckert, J. Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting. Mater. Des. 2016, 89, 335–341. [Google Scholar] [CrossRef]
- Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E.A. Steels in additive manufacturing: A review of their microstructure and properties. Mater. Sci. Eng. A 2020, 772, 138633. [Google Scholar] [CrossRef]
- Boes, J.; Röttger, A.; Theisen, W. Processing of X65MoCrWV3-2 Cold Work Tool Steel by Laser Powder Bed Fusion. Steel Res. Int. 2020, 91, 1900445. [Google Scholar] [CrossRef]
- Botero, C.; Ramsperger, M.; Selte, A.; Åsvik, K.; Koptyug, A.; Skoglund, P.; Roos, S.; Rännar, L.-E.; Bäckström, M. Additive Manufacturing of a Cold-Work Tool Steel using Electron Beam Melting. Steel Res. Int. 2020, 91, 1900448. [Google Scholar] [CrossRef]
- Botero, C.A.; Şelte, A.; Ramsperger, M.; Maistro, G.; Koptyug, A.; Bäckström, M.; Sjöström, W.; Rännar, L.-E. Microstructural and Mechanical Evaluation of a Cr-Mo-V Cold-Work Tool Steel Produced via Electron Beam Melting (EBM). Materials 2021, 14, 2963. [Google Scholar] [CrossRef]
- Carasi, G.; Yu, B.; Hutten, E.; Zurob, H.; Casati, R.; Vedani, M. Effect of Heat Treatment on Microstructure Evolution of X38CrMoV5-1 Hot-Work Tool Steel Produced by L-PBF. Metall. Mater. Trans. A 2021, 52, 2564–2575. [Google Scholar] [CrossRef]
- Cormier, D.; Harrysson, O.; West, H. Characterization of H13 steel produced via electron beam melting. Rapid Prototyp. J. 2004, 10, 35–41. [Google Scholar] [CrossRef]
- He, Y.; Zhong, M.; Jones, N.; Beuth, J.; Webler, B. The Columnar-to-Equiaxed Transition in Melt Pools During Laser Powder Bed Fusion of M2 Steel. Metall. Mater. Trans A 2021, 52, 4206–4221. [Google Scholar] [CrossRef]
- Huber, F.; Bischof, C.; Hentschel, O.; Heberle, J.; Zettl, J.; Nagulin, K.Y.; Schmidt, M. Laser beam melting and heat-treatment of 1.2343 (AISI H11) tool steel–microstructure and mechanical properties. Mater. Sci. Eng. A 2019, 742, 109–115. [Google Scholar] [CrossRef]
- Jurisch, M.; Escher, C.; Kirchner, A.; Klöden, B.; Weißgärber, T.; Kieback, B. Processing of tool steels by Electron Beam Melting. In Proceedings of the DDMC 2018: Fraunhofer Direct Digital Manufacturing Conference proceedings: Direct Digital Manufacturing Conference, Berlin, Germany, 14–15 March 2018; Fraunhofer Verlag: Stuttgart, Germany, 2018. ISBN 978-3-8396-1320-7. [Google Scholar]
- Kahlert, M.; Brenne, F.; Vollmer, M.; Niendorf, T. Influence of Microstructure and Defects on Mechanical Properties of AISI H13 Manufactured by Electron Beam Powder Bed Fusion. J. Mater. Eng. Perform. 2021, 30, 6895–6904. [Google Scholar] [CrossRef]
- Kirchner, A.; Klöden, B.; Franke-Jurisch, M.; Inarra Rauh-Hain, L.; Weißgärber, T. Manufacturing of Tool Steels by PBF-EB. Metals 2021, 11, 1640. [Google Scholar] [CrossRef]
- Langer, L.; Schmitt, M.; Cuesta Aguirre, J.; Schlick, G.; Schilp, J. Hybrid additive manufacturing of hot working tool steel H13 with dissimilar base bodies using Laser-based Powder Bed Fusion. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1135, 12012. [Google Scholar] [CrossRef]
- Mertens, R.; Vrancken, B.; Holmstock, N.; Kinds, Y.; Kruth, J.-P.; van Humbeeck, J. Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 Tool Steel SLM Parts. Phys. Procedia 2016, 83, 882–890. [Google Scholar] [CrossRef] [Green Version]
- Mooney, B.; Kourousis, K. A Review of Factors Affecting the Mechanical Properties of Maraging Steel 300 Fabricated via Laser Powder Bed Fusion. Metals 2020, 10, 1273. [Google Scholar] [CrossRef]
- Rivalta, F.; Ceschini, L.; Jarfors, A.E.W.; Stolt, R. Effect of Scanning Strategy in the L-PBF Process of 18Ni300 Maraging Steel. Metals 2021, 11, 826. [Google Scholar] [CrossRef]
- Taha, M.A.; Yousef, A.F.; Gany, K.A.; Sabour, H.A. On selective laser melting of ultra high carbon steel: Effect of scan speed and post heat treatment. Mater. Werkst. 2012, 43, 913–923. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Fang, Y.; He, Z. A short review on selective laser melting of H13 steel. Int. J. Adv. Manuf. Technol. 2020, 108, 2453–2466. [Google Scholar] [CrossRef]
- Wenz, T.; Kirchner, A.; Klöden, B.; Weißgärber, T.; Jurisch, M. Processing of High-Carbon Steel by Selective Electron Beam Melting. Steel Res. Int. 2020, 91, 1900479. [Google Scholar] [CrossRef] [Green Version]
- VBN Components: Additive Manufacturing Delivers a New Generation of Wear-Resistant Carbide Parts. Available online: https://issuu.com/inovar-communications/docs/metal_am_summer_2019_sp/143?fr=sZWQyYzExNTc2MzU (accessed on 30 December 2021).
- Günther, K.; Bergmann, J.P. Influencing Microstructure of Vanadium Carbide Reinforced FeCrVC Hardfacing during Gas Metal Arc Welding. Metals 2020, 10, 1345. [Google Scholar] [CrossRef]
- Saltzman, G.A.; Sahoo, P. Applications of Plasma Arc Weld Surfacing in Turbine Engines. In Thermal Spray Coatings: Properties, Processes, and Applications, Proceedings of the Fourth National Thermal Spray Conference, Pittsburgh, PA, USA, 4–10 May 1991; Bernecki, T.F., Ed.; ASM International: Materials Park, OH, USA, 1992; pp. 541–548. [Google Scholar]
- Chen, J.; Xue, L. Laser Cladding of CPM Tool Steels on Hardened H13 Hot-Work Steel for Low-Cost High-Performance Automotive Tooling. JOM 2012, 64, 688–693. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Y.; Yuan, G.; Yang, W. The effect of vanadium on microstructure and mechanical properties of Fe-based high-strength alloys. Results Phys. 2019, 15, 102335. [Google Scholar] [CrossRef]
- Meusburger. Datasheet 1.2343. Available online: https://www.meusburger.com/EN/US/media/GD_PG_$KT-DBL-MQU-$KP-MQU-$PG-12343_IN.pdf (accessed on 30 December 2021).
- Meusburger. Datasheet 1.2344. Available online: https://www.meusburger.com/EN/GB/media/GD_PG_$KT-DBL-MQU-$KP-MQU-$PG-12344_IN.pdf (accessed on 30 December 2021).
- Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus; ASTM G99-17; ASTM International: West Conshohocken, PA, USA, 2017.
- Liu, H.; Zhu, J.; Liu, Y.; Lai, Z. First-principles study on the mechanical properties of vanadium carbides VC and V4C3. Mater. Lett. 2008, 62, 3084. [Google Scholar] [CrossRef]
- Wang, S.-H.; Chen, J.-Y.; Xue, L. A study of the abrasive wear behaviour of laser-clad tool steel coatings. Surf. Coat. Technol. 2006, 200, 3446. [Google Scholar] [CrossRef] [Green Version]
- Leunda, J.; Soriano, C.; Sanz, C.; García Navas, V. Laser Cladding of Vanadium-Carbide Tool Steels for Die Repair. Phys. Procedia 2011, 12, 345. [Google Scholar] [CrossRef] [Green Version]
- Emmer, S.; Baksa, P.; Kovacik, J. Effect of microstructure on the sonotrode properties of tool materials Ferro-titanit WFN and steel CPM 10V. Kov. Mater. 2015, 53, 423. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Antolin, F.; Gonzalez-Pocino, A.; Cofino-Villar, A.; Alvarez-Perez, C.H. Optimisation of Thermal Processes with Plasma Nitriding on Vanadis 4 High Speed Steel. Materials 2022, 15, 906. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, Y.; Ye, J. Mechanical properties and electronic structures of VC, V4C3 and V8C7 from first principles. Phys. Scr. 2013, 88, 015301. [Google Scholar] [CrossRef]
- Tekumalla, S.; Tosi, R.; Tan, X.; Seita, M. Directed energy deposition and characterization of high-speed steels with high vanadium content. Addit. Manuf. Lett. 2022, 2, 100029. [Google Scholar] [CrossRef]
- Ranjan, A.; Kishore, K.; Pal, V.; Adhikary, M.; Kumar, A.; Tiwary, C.S.; Paliwal, M. Microstructure and Wear Behaviour of a Novel Fe-Cr-V-C Plasma Transferred Arc Coating. JOM 2021, 73, 4328. [Google Scholar] [CrossRef]
- Meusburger. Datasheet 1.2379. Available online: https://www.meusburger.com/EN/US/media/GD_PG_$KT-DBL-MQU-$KP-MQU-$PG-12379_IN.pdf (accessed on 24 January 2022).
- Uddeholm. Datasheet Vanadis 10 Superclean. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiBr7Kpwoz1AhUcR_EDHRSLAwYQFnoECBAQAQ&url=https%3A%2F%2Fwww.uddeholm.com%2Ffiles%2FPB_vanadis_10_english.pdf&usg=AOvVaw0tNquhZADlSAIBkkLOnR7O (accessed on 30 December 2021).
- Zapp. Data Sheet CPM® 10V. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj8stmb6Iz1AhX7R_EDHXqPDmAQFnoECAoQAQ&url=https%3A%2F%2Fwww.zapp.com%2Ffileadmin%2F_documents%2FDownloads%2Fmaterials%2Fpowder_metallurgic_tooling_steel%2FCPM%2Fde%2FCPM10V-Datenblatt.pdf&usg=AOvVaw2C98hQzACLPIx9QNC6lqFE (accessed on 30 December 2021).
Austenitization | Quenching | Tempering |
---|---|---|
1020 °C (1 h) | oil (1020 °C → 500 °C)/ air (from 500 °C) | 3 × 540 °C (1 h) |
Phase | Color | Total Fraction | Partition Fraction |
---|---|---|---|
bcc–ferrite (alpha iron) | 0.511 | 0.648 | |
fcc–mainly v-rich carbides | 0.258 | 0.327 | |
hex–M7C3 (Cr-rich) | 0.020 | 0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franke-Jurisch, M.; Mirz, M.; Wenz, T.; Kirchner, A.; Klöden, B.; Weißgärber, T. PBF-EB of Fe-Cr-V Alloy for Wear Applications. Materials 2022, 15, 1679. https://doi.org/10.3390/ma15051679
Franke-Jurisch M, Mirz M, Wenz T, Kirchner A, Klöden B, Weißgärber T. PBF-EB of Fe-Cr-V Alloy for Wear Applications. Materials. 2022; 15(5):1679. https://doi.org/10.3390/ma15051679
Chicago/Turabian StyleFranke-Jurisch, Marie, Markus Mirz, Thomas Wenz, Alexander Kirchner, Burghardt Klöden, and Thomas Weißgärber. 2022. "PBF-EB of Fe-Cr-V Alloy for Wear Applications" Materials 15, no. 5: 1679. https://doi.org/10.3390/ma15051679
APA StyleFranke-Jurisch, M., Mirz, M., Wenz, T., Kirchner, A., Klöden, B., & Weißgärber, T. (2022). PBF-EB of Fe-Cr-V Alloy for Wear Applications. Materials, 15(5), 1679. https://doi.org/10.3390/ma15051679