Structural, Electrical and Optical Properties of Pyrrolo[1,2-i][1,7] Phenanthroline-Based Organic Semiconductors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Compounds
2.2. Thin Films Preparation and Measurement Setup
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, Z.; Zhang, Z.; Bi, S. Nanoparticles for organic electronics applications. Mater. Res. Express 2020, 7, 012004. [Google Scholar] [CrossRef]
- Lee, E.K.; Lee, M.Y.; Park, C.H.; Lee, H.R.; Oh, J.H. Toward Environmentally Robust Organic Electronics: Approaches and Applications. Adv. Mater. 2017, 29, 1703638. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Park, M.-J.; Kim, J.-H. Crack-Assisted Charge Injection into Solvent-Free Liquid Organic Semiconductors via Local Electric Field Enhancement. Materials 2020, 13, 3349. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yan, D.; Jones, T.S. Molecular Template Growth and Its Applications in Organic Electronics and Optoelectronics. Chem. Rev. 2015, 115, 5570–5603. [Google Scholar] [CrossRef] [PubMed]
- Kampen, T.U. Low Molecular Weight Organic Semiconductors; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010. [Google Scholar]
- Sirringhaus, H. Low-temperature, solution-processed organic transistors for flexible electronics. In Proceedings of the IEEE Technology Time Machine Symposium on Technologies Beyond, Hong Kong, China, 1–3 June 2011. [Google Scholar]
- Liang, Z.; Yan, L.; Si, J.; Gong, P.; Li, X.; Liu, D.; Li, J.; Hou, X. Rational Design and Characterization of Symmetry-Breaking Organic Semiconductors in Polymer Solar Cells: A Theory Insight of the Asymmetric Advantage. Materials 2021, 14, 6723. [Google Scholar] [CrossRef] [PubMed]
- Perinot, A.; Giorgio, M.; Mattoli, V.; Natali, D.; Cairon, M. Organic Electronics Picks Up the Pace: Mask-Less, SolutionProcessed Organic Transistors Operating at 160 MHz. Adv. Sci. 2021, 8, 2001098. [Google Scholar] [CrossRef]
- Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A.J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; et al. A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics. Science 2012, 336, 327–332. [Google Scholar] [CrossRef]
- Sun, S.-S.; Sariciftci, N.S. Organic Photovoltaics: Mechanisms, Materials, and Devices; CRC Press, Taylor&Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA; Singapore, 2005. [Google Scholar]
- Tavasli, A.; Gurunlu, B.; Gunturkun, D.; Isci, R.; Faraji, S. A Review on Solution-Processed Organic Phototransistors and Their Recent Developments. Electronics 2022, 11, 316. [Google Scholar] [CrossRef]
- Yousaf, J.; Almajali, E.; El Najjar, M.; Amir, A.; Altaf, A.; Elahi, M.; Alja’afreh, S.S.; Rmili, H. Flexible, Fully Printable, and Inexpensive Paper-Based Chipless Arabic Alphabet-Based RFID Tags. Sensors 2022, 22, 564. [Google Scholar] [CrossRef]
- Amiri, M.; Shul, G.; Donzel, N.; Bélanger, D. Aqueous electrochemical energy storage system based on phenanthroline- and anthraquinone-modified carbon electrodes. Electrochim. Acta 2021, 390, 138862. [Google Scholar] [CrossRef]
- Danac, R.; Leontie, L.; Girtan, M.; Prelipceanu, M.; Graur, A.; Carlescu, A.; Rusu, G.I. On the d.c. electric conductivity and conduction mechanism of some stable disubstituted 4-(4-pyridyl)pyridinium ylides in thin films. Thin Solid Films 2014, 556, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Karl, N. Charge carrier transport in organic semiconductors. Synth. Met. 2003, 133–134, 649–657. [Google Scholar] [CrossRef]
- Kazheva, O.N.; Kushch, N.D.; Aleksandrov, G.G.; Dyachenko, O.A. Crystal structure and molecular packing in a new organic semiconductor penta[bis(ethylenedithio)tetrathiafulvalene]-hexathiocyanatomononitratoyttrium(III)-ethanol. Mater. Chem. Phys. 2002, 73, 193–197. [Google Scholar] [CrossRef]
- Myers, R. The Basics of Chemistry; Greenwood Publishing Group, Westport: London, UK, 2003. [Google Scholar]
- Hu, P.; He, P.; Jiang, H. Greater than 10 cm2V−1s−1: A breakthrough of organicsemiconductors for field-effect transistors. InfoMat 2021, 3, 613–630. [Google Scholar] [CrossRef]
- Egginger, M.; Bauer, S.; Schwodiauer, R.; Neugebauer, H.; Sariciftci, N.S. Current versus gate voltage hysteresis in organic field effect transistors. Monatsh. Chem. 2009, 140, 735–750. [Google Scholar] [CrossRef]
- Hadis, M. Advanced Semiconductor and Organic Nano-Techniques; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2003. [Google Scholar]
- Lu, G. Organic Semiconductor; University of Rochester, Course ECE 423: Rochester, UK; New York, NY, USA, 2006. [Google Scholar]
- Zhang, Y.; Guo, L.; Zhu, X.; Sun, X. The Application of Organic Semiconductor Materials in Spintronics. Front. Chem. 2020, 8, 589207. [Google Scholar] [CrossRef]
- Leontie, L.; Danac, R.; Druta, I.; Carlescu, A. Electron transport properties of some newly synthesized nonsymmetrical bisindolizines in thin films. Synth. Metals 2010, 160, 2526–2533. [Google Scholar] [CrossRef]
- Prelipceanu, M.; Prelipceanu, O.S.; Leontie, L.; Danac, R. Photoelectron spectroscopy investigations of pyrrolo[1,2-a][1,10] phenanthroline derivatives. Phys. Lett. A 2007, 368, 331–335. [Google Scholar] [CrossRef]
- Popovici, L.; Amarandi, R.M.; Mangalagiu, I.I.; Mangalagiu, V.; Danac, R. Synthesis, molecular modelling and anticancer evaluation of new pyrrolo[1,2-b] pyridazine and pyrrolo[2,1-a] phthalazine derivatives. J. Enz. Inhib. Med. Chem. 2019, 34, 230–243. [Google Scholar] [CrossRef] [Green Version]
- Airinei, A.; Tigoianu, R.; Danac, R.; Al Matarneh, C.M.; Isac, D.L. Steady state and time resolved fluorescence studies of new indolizine derivatives with phenanthroline skeleton. J. Lumin. 2018, 199, 2–12. [Google Scholar] [CrossRef]
- Marangoci, N.-L.; Popovici, L.; Ursu, E.-L.; Danac, R.; Clima, L.; Cojocaru, C.; Coroaba, A.; Neamtu, A.; Mangalagiu, I.I.; Pinteala, M.; et al. Pyridyl-indolizine derivatives as DNA binders and pH-sensible fluorescent dyes. Tetrahedron 2016, 72, 8215–8222. [Google Scholar] [CrossRef]
- Al Matarneh, C.M.; Mangalagiu, I.I.; Shova, S.; Danac, R. Synthesis, structure, antimycobacterial and anticancer evaluation of new pyrrolo-phenanthroline derivatives. J. Enz. Inhib. Med. Chem. 2016, 31, 470–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danac, R.; Al Matarneh, C.M.; Shova, S.; Daniloaia, T.; Balan, M.; Mangalagiu, I.I. New indolizines with phenanthroline skeleton: Synthesis, structure, antimycobacterial and anticancer evaluation. Bioorg. Med. Chem. 2015, 23, 2318–2327. [Google Scholar] [CrossRef] [PubMed]
- Leontie, L.; Danac, R.; Apetroaei, N.; Rusu, G.I. Study of electronic transport properties of some new N-(p-R-phenacyl)-1,7-phenanthrolinium bromides in thin films. Mat. Chem. Phys. 2011, 127, 471–478. [Google Scholar] [CrossRef]
- Kuki, Á.; Nagy, M.; Nagy, L.; Zsuga, M.; Kéki, S. Ligand Size Distribution of Phenanthroline—Functionalized Polyethylene Glycol-Iron(II) Complexes Determined by Electrospray Ionization Mass Spectrometry and Computer Simulation. J. Am. Soc. Mass Spectrom. 2010, 21, 1561–1564. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Audebert, P.; Wei, Y.; Al Choueiry, A.; Lanty, G.; Bréhier, A.; Galmiche, L.; Clavier, G.; Boissière, C.; Lauret, J.S.; et al. Preparations and Characterizations of Luminescent Two Dimensional Organic-inorganic Perovskite Semiconductors. Materials 2010, 3, 3385–3406. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Song, J.; Chen, Z.; He, J.; Wang, X.; Liu, H.; Chen, S.; Qu, J.; Wong, W.-Y. Achieving High-Performance Solution-Processed Deep-Red/Near-Infrared Organic Light-Emitting Diodes with a Phenanthroline-Based and Wedge-Shaped Fluorophore. Adv. Electron. Mater. 2019, 5, 1800677. [Google Scholar] [CrossRef]
- Corriu, R.; Anh, N.T. Molecular Chemistry of Sol-Gel Derived Nanomaterials; Wiley: Chichester, UK, 2009. [Google Scholar]
- Hu, Z.; Miao, J.; Li, T.; Liu, M.; Murtaza, I.; Meng, H. Reduced interface losses in inverted perovskite solar cells by using a simple dual-functional phenanthroline derivative. Nano Energy 2018, 43, 72–80. [Google Scholar] [CrossRef]
- Sakka, S. Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications; Springer: New York, NY, USA, 2004. [Google Scholar]
- Chang, Y.; Wang, H.; Zhu, Q.; Luo, P.; Dong, S. Theoretical calculation and analysis of ZrO2 spherical nanometer powders. J. Adv. Ceram. 2013, 2, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Saleem, H.; Haneef, M.; Abbasi, H.Y. Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater. Chem. Phys. 2018, 204, 1–7. [Google Scholar] [CrossRef]
- Klung, H.; Alexander, L. X-ray Diffraction Procedures; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Leontie, L.; Doroftei, C. Nanostructured spinel ferrites for catalytic combustion of gasoline vapors. Catal. Lett. 2017, 147, 2542–2548. [Google Scholar] [CrossRef]
- Doroftei, C.; Leontie, L. Nanocrystalline SrMnO3 perovskite prepared by sol–gel self-combustion method for sensor applications. J. Sol-Gel Sci. Technol. 2021, 97, 146–154. [Google Scholar] [CrossRef]
- Brenner, T.M.; Egger, D.A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid organic—Inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 2016, 1, 15007. [Google Scholar] [CrossRef]
- Schweicher, G.; Olivier, Y.; Lemaur, V.; Geerts, Y.H. What Currently Limits Charge Carrier Mobility in Crystals of Molecular Semiconductors? Isr. J. Chem. 2013, 53, 1–27. [Google Scholar] [CrossRef]
- Satyavani, T.V.S.L.; Kiran, B.R.; Kumar, V.R.; Kumar, A.S.; Naidu, S.V. Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells. Int. J. Eng. Sci. Technol. 2016, 19, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, T.; Shimojuku, A.; Shan, S.; Guo, X.; Yamazaki, D.; Ito, E.; Higo, Y.; Funakoshi, K. Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs. J. Geophys. Res. 2012, 117, B08205. [Google Scholar] [CrossRef] [Green Version]
- Baraker, B.M.; Lobo, B. Analysis of Electrical Measurements on Cadmium Chloride Doped PVA-PVP Blend. Mapana J. Sci. 2017, 16, 45–65. [Google Scholar] [CrossRef]
- Rezlescu, N.; Doroftei, C.; Rezlescu, E.; Popa, P.D. The influence of Sn4+ and/or Mo6+ ions on the structure, electrical and gas sensing properties of Mg-ferrite. Phys. Stat. Sol. A 2006, 203, 306–316. [Google Scholar] [CrossRef]
- Rusu, G.I.; Airinei, A.; Rusu, M.; Prepeliţă, P.; Marin, L.; Cozan, V.; Rusu, I.I. On the electronic transport mechanism in thin films of some new poly(azomethine sulfone)s. Acta Mater. 2007, 55, 433–442. [Google Scholar] [CrossRef]
- Leontie, L.; Danac, R.; Carlescu, A.; Doroftei, C.; Rusu, G.G.; Tiron, V.; Gurlui, S.; Susu, O. Electric and optical properties of some new functional lower-rimsubstituted calixarene derivatives in thin films. Appl. Phys. A 2018, 124, 355. [Google Scholar] [CrossRef]
- Rezlescu, E.; Doroftei, C.; Rezlescu, N.; Popa, P.D. Preparation, structure and gas-sensing properties of gamma-Fe2O3 and gamma-Fe2O3-TiO2 thick films. Phys. Stat. Sol. A 2008, 205, 1790–1793. [Google Scholar] [CrossRef]
- Doroftei, C. Formaldehyde sensitive Zn-doped LPFO thin films obtained by rf sputtering. Sens. Actuators B 2016, 231, 793–799. [Google Scholar] [CrossRef]
- Doroftei, C.; Popa, P.D.; Rezlescu., N. The influence of the heat treatment on the humidity sensitivity of magnesium nanoferrite. J. Optoelectron. Adv. Mater. 2010, 12, 881–884. [Google Scholar]
- Doroftei, C.; Leontie, L. Porous Nanostructured Gadolinium Aluminate for High-Sensitivity Humidity Sensors. Materials 2021, 14, 7102. [Google Scholar] [CrossRef] [PubMed]
- Rusu, G.I.; Căplănuş, I.; Leontie, L.; Airinei, A.; Butuc, E.; Mardare, D.; Rusu, I.I. Studies on the electronic transport properties of some aromatic polysulfones in thin films. Acta Mater. 2001, 49, 553–559. [Google Scholar] [CrossRef]
- Sta, I.; Jlassi, M.; Hajji, M.; Boujmil, M.F.; Jerbi, R.; Kandyla, M.; Kompitsas, M.; Ezzaouia, H. Structural and optical properties of TiO2 thin films prepared by spin coating. J. Sol-Gel Sci. Technol. 2014, 72, 421–427. [Google Scholar] [CrossRef]
- Kaiser, C.; Sandberg, O.J.; Zarrabi, N.; Li, W.; Meredith, P.; Armin, A. A universal Urbach rule for disordered organic semiconductors. Nat. Commun. 2021, 12, 3988. [Google Scholar] [CrossRef]
- Pancove, J. Optical Processes in Semiconductors; Prentice-Hal: Englewood Cliffs, NJ, USA, 1979. [Google Scholar]
- Erdoğan, E.; Gündüz, B. Controlling of the optical properties of the solutions of the PTCDI-C8 Organic Semiconductor, Electron. Mater. Lett. 2016, 12, 773–778. [Google Scholar]
- Yakuphanoglu, F. Electrical conductivity, optical and metal–semiconductor contact properties of organic semiconductor based on MEH-PPV/fullerene blend. J. Phys. Chem. Solids 2008, 69, 949–954. [Google Scholar] [CrossRef]
- Yadav, B.C.; Yadav, R.C.; Dwivedi, P.K. Sol-gel processed (Mg–Zn–Ti) oxide nano-composite film deposited on prism base as an opto-electronic humidity sensor. Sens. Actuators B Chem. 2010, 148, 413–419. [Google Scholar] [CrossRef]
- Moss, T.S.; Burrell, G.J.; Elis, B. Semiconductors Opto-Electronics; Butterworth Co., Ltd.: London, UK, 1973. [Google Scholar]
- Tauc, J. Optical Properties of Solids; North-Holland: Amsterdam, The Netherland, 1973. [Google Scholar]
- Danac, R.; Leontie, L.; Carlescu, A.; Rusu, G.I. DC Electric Conduction Mechanism of Some Newly Synthesized Indolizine Derivatives in Thin Films. Mat. Chem. Phys. 2012, 134, 1042–1048. [Google Scholar] [CrossRef]
Compound | Molecular Formula | Molecular Weight, M (g/mol) | Color | Melting Point (°C) |
---|---|---|---|---|
LL1 | C26H17ClN2O5 | 472.88 | orange | 270–271 |
LL2 | C27H20N2O5 | 452.46 | yellow | 245–247 |
LL3 | C26H17N3O7 | 483.43 | orange | 284–286 |
LL1 | LL2 | LL3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
I/I0 (%) | 2θ (deg.) | dhkl (nm) | D (nm) | I/I0 (%) | 2θ (deg.) | dhkl (nm) | D (nm) | I/I0 (%) | 2θ (deg.) | dhkl (nm) | D (nm) |
33.23 | 10.34 | 0.803 | 59.5 | 100 | 10.37 | 0.801 | 27.77 | 51.4 | 11.41 | 0.728 | 23.16 |
7.15 | 10.83 | 0.767 | 75.76 | 21.57 | 12 | 0.692 | 41.71 | 100 | 13.76 | 0.604 | 21.42 |
9.61 | 11.24 | 0.739 | 41.68 | 62.04 | 12.9 | 0.644 | 27.83 | 21.46 | 15.53 | 0.535 | 18.6 |
24.07 | 12.01 | 0.692 | 36.27 | 51.9 | 13.9 | 0.598 | 23.88 | 9.5 | 16.29 | 0.511 | 25.39 |
49.69 | 13.01 | 0.639 | 49.12 | 18.97 | 15.7 | 0.53 | 41.87 | 5.67 | 16.67 | 0.499 | 29.94 |
30.07 | 14.05 | 0.592 | 39.81 | 67.67 | 16.74 | 0.497 | 23.96 | 18.59 | 18.36 | 0.453 | 23.34 |
100 | 16.89 | 0.493 | 49.34 | 27.2 | 21.15 | 0.394 | 28.13 | 12.44 | 22.22 | 0.375 | 27.27 |
36 | 18.34 | 0.454 | 20.49 | 28.42 | 21.88 | 0.381 | 20.12 | 20.71 | 22.69 | 0.368 | 18.39 |
27.38 | 21.81 | 0.382 | 42.24 | 63.34 | 23.1 | 0.361 | 22.28 | 24.4 | 24.06 | 0.347 | 14.88 |
15.15 | 22.63 | 0.369 | 42.3 | 31.02 | 24.78 | 0.337 | 13.7 | 69.99 | 27.23 | 0.307 | 16.41 |
37 | 23.16 | 0.36 | 28.23 | 22.18 | 26.32 | 0.318 | 25.82 | 20.77 | 29.44 | 0.284 | 32.99 |
21.84 | 24.89 | 0.335 | 42.48 | 69.58 | 27.28 | 0.307 | 9.59 | 22.82 | 31.16 | 0.269 | 10.37 |
23.23 | 26.64 | 0.314 | 60.9 | 17.67 | 46.16 | 0.184 | 33.4 | 12.3 | 43.3 | 0.196 | 14.39 |
58.23 | 27.34 | 0.306 | 21.34 | 20.27 | 48.78 | 0.175 | 35.04 | 12.3 | 43.32 | 0.196 | 14.87 |
34.76 | 35.92 | 0.234 | 54.51 | 14.81 | 56.53 | 0.152 | 16.82 | 15.37 | 47 | 0.181 | 36.19 |
15.31 | 39.31 | 0.215 | 31.46 | 17.42 | 48.66 | 0.175 | 21.68 | ||||
18.38 | 41.16 | 0.205 | 68.17 | ||||||||
17.69 | 43.54 | 0.195 | 17.51 | ||||||||
19.61 | 46.64 | 0.182 | 39.28 | ||||||||
21.38 | 50.38 | 0.17 | 26.96 | ||||||||
26.15 | 53.31 | 0.161 | 27.3 |
Compound | d (μm) | σc (Ω−1⋅cm−1) | ΔT (K) | σT (Ω−1⋅cm−1) | Tc (K) | Ea (eV) | Eg (eV) |
---|---|---|---|---|---|---|---|
LL1 | 10 | 1.92 × 10−4 | 293–533 | 7.36 × 10−3 | 340 | 0.74 | 1.48 |
LL2 | 13 | 3.85 × 10−3 | 293–513 | 6.17 × 10−3 | 325 | 0.77 | 1.54 |
LL3 | 10 | 3.95 × 10−4 | 293–543 | 9.40 × 10−3 | 310 | 0.76 | 1.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doroftei, C.; Carlescu, A.; Leontie, L.; Danac, R.; Al-Matarneh, C.M. Structural, Electrical and Optical Properties of Pyrrolo[1,2-i][1,7] Phenanthroline-Based Organic Semiconductors. Materials 2022, 15, 1684. https://doi.org/10.3390/ma15051684
Doroftei C, Carlescu A, Leontie L, Danac R, Al-Matarneh CM. Structural, Electrical and Optical Properties of Pyrrolo[1,2-i][1,7] Phenanthroline-Based Organic Semiconductors. Materials. 2022; 15(5):1684. https://doi.org/10.3390/ma15051684
Chicago/Turabian StyleDoroftei, Corneliu, Aurelian Carlescu, Liviu Leontie, Ramona Danac, and Cristina Maria Al-Matarneh. 2022. "Structural, Electrical and Optical Properties of Pyrrolo[1,2-i][1,7] Phenanthroline-Based Organic Semiconductors" Materials 15, no. 5: 1684. https://doi.org/10.3390/ma15051684
APA StyleDoroftei, C., Carlescu, A., Leontie, L., Danac, R., & Al-Matarneh, C. M. (2022). Structural, Electrical and Optical Properties of Pyrrolo[1,2-i][1,7] Phenanthroline-Based Organic Semiconductors. Materials, 15(5), 1684. https://doi.org/10.3390/ma15051684