Fabrication of Cu2ZnSnS4 Light Absorber Using a Cost-Effective Mechanochemical Method for Photovoltaic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanochemical Fabrication of CZTS Nanopowder and Ink Preparation
2.2. Preparation of Na Solution
2.3. CZTS Thin-Film Coating, Annealing, and Photovoltaic Device Fabrication
3. Results and Discussion
3.1. XRD Analysis
3.2. Raman Analysis
3.3. FT-IR Analysis
3.4. FE-SEM and EDS Analyses
3.5. Optical Properties
3.6. Electrical Properties
3.7. Photovoltaic Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement:
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Yang, J.-H.; Gong, X.-G.; Walsh, A.; Wei, S.-H. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev. B 2010, 81, 245204. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Huang, J.; Sun, K.; Johnston, S.; Zhang, Y.; Sun, H.; Pu, A.; He, M.; Liu, F.; Eder, K. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 2018, 3, 764–772. [Google Scholar] [CrossRef]
- Ito, K.; Nakazawa, T. Electrical and optical properties of stannite-type quaternary semiconductor thin films. Jpn. J. Appl. Phys. 1988, 27, 2094. [Google Scholar] [CrossRef]
- Tanaka, T.; Nagatomo, T.; Kawasaki, D.; Nishio, M.; Guo, Q.; Wakahara, A.; Yoshida, A.; Ogawa, H. Preparation of Cu2ZnSnS4 thin films by hybrid sputtering. J. Phys. Chem. Solids 2005, 66, 1978–1981. [Google Scholar] [CrossRef]
- Ferdaous, M.; Chelvanathan, P.; Shahahmadi, S.; Sapeli, M.; Sopian, K.; Amin, N. Compositional disparity in Cu2ZnSnS4 (CZTS) thin film deposited by RF-sputtering from a single quaternary compound target. Mater. Lett. 2018, 221, 201–205. [Google Scholar] [CrossRef]
- Li, W.; Zhao, L.; Zhang, K.; Sun, H.; Lai, Y.; Jiang, Y.; Jiang, L.; Liu, F.; Jia, M. Fabrication of Cu2ZnSnS4 thin film solar cells by annealing of reactively sputtered precursors. J. Alloys Compd. 2017, 701, 55–62. [Google Scholar] [CrossRef]
- Katagiri, H.; Saitoh, K.; Washio, T.; Shinohara, H.; Kurumadani, T.; Miyajima, S. Development of thin film solar cell based on Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 2001, 65, 141–148. [Google Scholar] [CrossRef]
- Kirou, H.; Atourki, L.; Essaleh, L.; Taleb, A.; Messous, M.; Bouabid, K.; Nya, M.; Ihlal, A. Towards phase pure Kesterite Cu2ZnSnS4 thin films via Cu-Zn-Sn electrodeposition under a variable applied potential. J. Alloys Compd. 2019, 783, 524–532. [Google Scholar] [CrossRef]
- Ashfaq, A.; Jacob, J.; Bano, N.; Nabi, M.A.U.; Ali, A.; Ahmad, W.; Mahmood, K.; Arshad, M.; Ikram, S.; Rehman, U. A two step technique to remove the secondary phases in CZTS thin films grown by sol-gel method. Ceram. Int. 2019, 45, 10876–10881. [Google Scholar] [CrossRef]
- Nakayama, N.; Ito, K. Sprayed films of stannite Cu2ZnSnS4. Appl. Surf. Sci. 1996, 92, 171–175. [Google Scholar] [CrossRef]
- Wang, W.; Shen, H.; Wong, L.H.; Su, Z.; Yao, H.; Li, Y. A 4.92% efficiency Cu2ZnSnS4 solar cell from nanoparticle ink and molecular solution. RSC Adv. 2016, 6, 54049–54053. [Google Scholar] [CrossRef]
- Habas, S.E.; Platt, H.A.; van Hest, M.F.; Ginley, D.S. Low-cost inorganic solar cells: From ink to printed device. Chem. Rev. 2010, 110, 6571–6594. [Google Scholar] [CrossRef] [PubMed]
- Takacs, L. Self-sustaining reactions induced by ball milling. Prog. Mater. Sci. 2002, 47, 355–414. [Google Scholar] [CrossRef]
- Liu, C.P.; Chuang, C.L. Fabrication of CIGS nanoparticle-ink using ball milling technology for applied in CIGS thin films solar cell. Powder Technol. 2012, 229, 78–83. [Google Scholar] [CrossRef]
- Mehdaoui, S.; Benslim, N.; Aissaoui, O.; Benabdeslem, M.; Bechiri, L.; Otmani, A.; Portier, X.; Nouet, G. Study of the properties of CuInSe2 materials prepared from nanoparticle powder. Mater. Charact. 2009, 60, 451–455. [Google Scholar] [CrossRef]
- Campos, C.; Ersching, K.; De Lima, J.; Grandi, T.; Höhn, H.; Pizani, P. Influence of minor oxidation of the precursor powders to form nanocrystalline CdTe by mechanical alloying. J. Alloys Compd. 2008, 466, 80–86. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, H. Cu2ZnSnS4 synthesized through a green and economic process. J. Alloys Compd. 2011, 509, 9627–9630. [Google Scholar] [CrossRef]
- Gao, F.; Yamazoe, S.; Maeda, T.; Nakanishi, K.; Wada, T. Structural and optical properties of In-free Cu2ZnSn(S, Se)4 solar cell materials. Jpn. J. Appl. Phys. 2012, 51, 10NC29. [Google Scholar] [CrossRef]
- Woo, K.; Kim, Y.; Moon, J. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy Environ. Sci. 2012, 5, 5340–5345. [Google Scholar] [CrossRef]
- Woo, K.; Kim, Y.; Yang, W.; Kim, K.; Kim, I.; Oh, Y.; Kim, J.Y.; Moon, J. Band-gap-graded Cu2ZnSn(S1-x, Sex)4 solar cells fabricated by an ethanol-based, particulate precursor ink route. Sci. Rep. 2013, 3, 3069. [Google Scholar] [CrossRef]
- Nagaoka, A.; Miyake, H.; Taniyama, T.; Kakimoto, K.; Nose, Y.; Scarpulla, M.A.; Yoshino, K. Effects of sodium on electrical properties in Cu2ZnSnS4 single crystal. Appl. Phys. Lett. 2014, 104, 152101. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Sun, S.; Liu, B.; Hao, R.; Sun, L. Influence of Na2S treatment on CZTS/Mo interface in Cu2ZnSnS4 solar cells annealed in sulfur-free atmosphere. Optik 2021, 242, 166998. [Google Scholar] [CrossRef]
- Xu, J.; Shang, S.; Yang, J.; Liu, J.; Jiang, S. Effect of sodium-doping on the performance of CZTS absorb layer: Single and bifacial sodium-incorporation method. Sol. Energy 2021, 221, 476–482. [Google Scholar] [CrossRef]
- Altamura, G.; Wang, M.; Choy, K.-L. Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S, Se)4 solar cells. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Liu, X.; Cui, H.; Li, W.; Song, N.; Liu, F.; Conibeer, G.; Hao, X. Improving Cu2ZnSnS4 (CZTS) solar cell performance by an ultrathin ZnO intermediate layer between CZTS absorber and Mo back contact. Phys. Status Solidi (RRL) Rapid Res. Lett. 2014, 8, 966–970. [Google Scholar] [CrossRef]
- Zhou, F.; Zeng, F.; Liu, X.; Liu, F.; Song, N.; Yan, C.; Pu, A.; Park, J.; Sun, K.; Hao, X. Improvement of J sc in a Cu2ZnSnS4 Solar Cell by using a thin carbon intermediate layer at the Cu2ZnSnS4/Mo Interface. ACS Appl. Mater. Interfaces 2015, 7, 22868–22873. [Google Scholar] [CrossRef]
- Zeng, F.; Sun, K.; Gong, L.; Jiang, L.; Liu, F.; Lai, Y.; Li, J. Back contact–absorber interface modification by inserting carbon intermediate layer and conversion efficiency improvement in Cu2ZnSn(S, Se)4 solar cell. Phys. Status Solidi (RRL) Rapid Res. Lett. 2015, 9, 687–691. [Google Scholar] [CrossRef]
- Oo, W.H.; Johnson, J.; Bhatia, A.; Lund, E.; Nowell, M.; Scarpulla, M. Grain size and texture of Cu2ZnSnS4 thin films synthesized by cosputtering binary sulfides and annealing: Effects of processing conditions and sodium. J. Electron. Mater. 2011, 40, 2214–2221. [Google Scholar]
- Zhou, H.; Song, T.-B.; Hsu, W.-C.; Luo, S.; Ye, S.; Duan, H.-S.; Hsu, C.-J.; Yang, W.; Yang, Y. Rational defect passivation of Cu2ZnSn(S, Se)4 photovoltaics with solution-processed Cu2ZnSnS4: Na nanocrystals. J. Am. Chem. Soc. 2013, 135, 15998–16001. [Google Scholar] [CrossRef]
- Sun, K.; Liu, F.; Huang, J.; Yan, C.; Song, N.; Sun, H.; Xue, C.; Zhang, Y.; Pu, A.; Shen, Y. Flexible kesterite Cu2ZnSnS4 solar cells with sodium-doped molybdenum back contacts on stainless steel substrates. Sol. Energy Mater. Sol. Cells 2018, 182, 14–20. [Google Scholar] [CrossRef]
- Özdal, T.; Kavak, H. Determination of crystallization threshold temperature for sol-gel spin coated Cu2ZnSnS4 thin films. Ceram. Int. 2018, 44, 18928–18934. [Google Scholar] [CrossRef]
- Mali, S.S.; Shinde, P.S.; Betty, C.A.; Bhosale, P.N.; Oh, Y.W.; Patil, P.S. Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. J. Phys. Chem. Solids 2012, 73, 735–740. [Google Scholar] [CrossRef]
- Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.; Rahman, K.; Haque, F.; Akhtaruzzaman, M.; Alam, M.; Alothman, Z.; Sopian, K.; Amin, N. Properties of low temperature vacuum annealed CZTS thin films deposited on polymer substrate. Chalcogenide Lett. 2014, 11, 233–239. [Google Scholar]
- Mustapha, S.; Ndamitso, M.; Abdulkareem, A.; Tijani, J.; Shuaib, D.; Mohammed, A.; Sumaila, A. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10, 045013. [Google Scholar] [CrossRef]
- Shyju, T.; Anandhi, S.; Suriakarthick, R.; Gopalakrishnan, R.; Kuppusami, P. Mechanosynthesis, deposition and characterization of CZTS and CZTSe materials for solar cell applications. J. Solid State Chem. 2015, 227, 165–177. [Google Scholar] [CrossRef]
- Indubala, E.; Sarveshvaran, S.; Sudha, V.; Mamajiwala, A.Y.; Harinipriya, S. Secondary phases and temperature effect on the synthesis and sulfurization of CZTS. Sol. Energy 2018, 173, 215–224. [Google Scholar] [CrossRef]
- Wang, H.; Yasin, A.; Quitoriano, N.J.; Demopoulos, G.P. Aqueous-Based Binary Sulfide Nanoparticle Inks for Cu2ZnSnS4 Thin Films Stabilized with Tin (IV) Chalcogenide Complexes. Nanomaterials 2019, 9, 1382. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.; Salomé, P.; Da Cunha, A. Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J. Alloys Compd. 2011, 509, 7600–7606. [Google Scholar] [CrossRef] [Green Version]
- Dimitrievska, M.; Fairbrother, A.; Fontané, X.; Jawhari, T.; Izquierdo-Roca, V.; Saucedo, E.; Pérez-Rodríguez, A. Multiwavelength excitation Raman scattering study of polycrystalline kesterite Cu2ZnSnS4 thin films. Appl. Phys. Lett. 2014, 104, 021901. [Google Scholar] [CrossRef] [Green Version]
- Molla, A.; Sahu, M.; Kumar, Y.; Hussain, S. Soft template mediated synthesis of Bi–In–Zn–S and its efficient visible-light-driven decomposition of methylene blue. RSC Adv. 2015, 5, 41941–41948. [Google Scholar] [CrossRef] [Green Version]
- Molla, A.; Sahu, M.; Hussain, S. Under dark and visible light: Fast degradation of methylene blue in the presence of Ag–In–Ni–S nanocomposites. J. Mater. Chem. A 2015, 3, 15616–15625. [Google Scholar] [CrossRef] [Green Version]
- Marcos, M.A.; Cabaleiro, D.; Guimarey, M.J.; Comuñas, M.J.; Fedele, L.; Fernández, J.; Lugo, L. PEG 400-based phase change materials nano-enhanced with functionalized graphene nanoplatelets. Nanomaterials 2018, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, A.; Blasiak, B.; Pasquier, E.; Tomanek, B.; Trudel, S. Synthesis, characterization, and evaluation of PEGylated first-row transition metal ferrite nanoparticles as T 2 contrast agents for high-field MRI. RSC Adv. 2017, 7, 38125–38134. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gu, J.; Zhang, J.; Yu, F.; Wang, J.; Nie, N.; Li, W. LiFePO4 nanoparticles growth with preferential (010) face modulated by Tween-80. Rsc Adv. 2015, 5, 9745–9751. [Google Scholar] [CrossRef]
- Hu, D.; Ogawa, K.; Kajiyama, M.; Enomae, T. Characterization of self-assembled silver nanoparticle ink based on nanoemulsion method. R. Soc. Open Sci. 2020, 7, 200296. [Google Scholar] [CrossRef]
- Kishore, R.S.; Pappenberger, A.; Dauphin, I.B.; Ross, A.; Buergi, B.; Staempfli, A.; Mahler, H.-C. Degradation of polysorbates 20 and 80: Studies on thermal autoxidation and hydrolysis. J. Pharm. Sci. 2011, 100, 721–731. [Google Scholar] [CrossRef]
- Pramono, E.; Utomo, S.; Wulandari, V.; Clegg, F. The effect of polyethylene glycol Mw 400 and 600 on stability of Shellac Waxfree. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2016. [Google Scholar]
- Tang, D.; Wang, Q.; Liu, F.; Zhao, L.; Han, Z.; Sun, K.; Lai, Y.; Li, J.; Liu, Y. An alternative route towards low-cost Cu2ZnSnS4 thin film solar cells. Surf. Coat. Technol. 2013, 232, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.; Yu, P.; Zuo, R.; Jin, J.; Xu, Y.; Ding, Y.; Song, J. The preparation of Cu (In, Al) S2 films by direct reduction and sulfuration of the oxide precursors. Scr. Mater. 2011, 64, 422–425. [Google Scholar] [CrossRef]
- Todorov, T.K.; Tang, J.; Bag, S.; Gunawan, O.; Gokmen, T.; Zhu, Y.; Mitzi, D.B. Beyond 11% efficiency: Characteristics of state-of-the-art Cu2ZnSn(S, Se)4 solar cells. Adv. Energy Mater. 2013, 3, 34–38. [Google Scholar] [CrossRef]
- Chen, J.; Wang, F.; Yang, B.; Peng, X.; Chen, Q.; Zou, J.; Dou, X. Fabrication of Cu2ZnSnS4 thin films based on facile nanocrystals-printing approach with rapid thermal annealing (RTA) process. Coatings 2019, 9, 130. [Google Scholar] [CrossRef] [Green Version]
- Mkawi, E.M.; Al-Hadeethi, Y.; Shalaan, E.; Bekyarova, E. Substrate temperature effect during the deposition of (Cu/Sn/Cu/Zn) stacked precursor CZTS thin film deposited by electron-beam evaporation. J. Mater. Sci. Mater. Electron. 2018, 29, 20476–20484. [Google Scholar] [CrossRef]
- Amal, M.I.; Kim, K.H. Crystallization of kesterite Cu2ZnSnS4 prepared by the sulfurization of sputtered Cu–Zn–Sn precursors. Thin Solid Film 2013, 534, 144–148. [Google Scholar] [CrossRef]
- Rajeshmon, V.; Kartha, C.S.; Vijayakumar, K.; Sanjeeviraja, C.; Abe, T.; Kashiwaba, Y. Role of precursor solution in controlling the opto-electronic properties of spray pyrolysed Cu2ZnSnS4 thin films. Sol. Energy 2011, 85, 249–255. [Google Scholar] [CrossRef]
- Baláž, P.; Hegedus, M.; Baláž, M.; Daneu, N.; Siffalovic, P.; Bujňáková, Z.; Tóthová, E.; Tešínsky, M.; Achimovičová, M.; Briančin, J. Photovoltaic materials: Cu2ZnSnS4 (CZTS) nanocrystals synthesized via industrially scalable, green, one-step mechanochemical process. Prog. Photovolt. Res. Appl. 2019, 27, 798–811. [Google Scholar] [CrossRef]
- Ahmoum, H.; Chelvanathan, P.; Su’ait, M.; Boughrara, M.; Li, G.; Al-Waeli, A.H.; Sopian, K.; Kerouad, M.; Amin, N. Impact of preheating environment on microstructural and optoelectronic properties of Cu2ZnSnS4 (CZTS) thin films deposited by spin-coating. Superlattices Microstruct. 2020, 140, 106452. [Google Scholar] [CrossRef]
- Singh, O.P.; Muhunthan, N.; Singh, V.; Samanta, K.; Dilawar, N. Effect of temperature on thermal expansion and anharmonicity in Cu2ZnSnS4 thin films grown by co-sputtering and sulfurization. Mater. Chem. Phys. 2014, 146, 452–455. [Google Scholar] [CrossRef]
- González, J.; Ribeiro, G.; Viana, E.; Fernandes, P.; Salomé, P.; Gutierrez, K.; Abelenda, A.; Matinaga, F.; Leitao, J.; Da Cunha, A. Hopping conduction and persistent photoconductivity in Cu2ZnSnS4 thin films. J. Phys. D Appl. Phys. 2013, 46, 155107. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.Z.; Khare, N. Structural and optical properties of CZTS thin films deposited by ultrasonically assisted chemical vapour deposition. J. Phys. D Appl. Phys. 2014, 47, 185101. [Google Scholar] [CrossRef]
- Liu, R.; Tan, M.; Zhang, X.; Chen, J.; Song, S.; Zhang, W. Impact of sol–gel precursor treatment with preheating temperature on properties of Cu2ZnSnS4 thin film and its photovoltaic solar cell. J. Alloys Compd. 2016, 655, 124–129. [Google Scholar] [CrossRef]
- Zhou, S.; Tan, R.; Jiang, X.; Shen, X.; Xu, W.; Song, W. Growth of CZTS thin films by sulfurization of sputtered single-layered Cu–Zn–Sn metallic precursors from an alloy target. J. Mater. Sci. Mater. Electron. 2013, 24, 4958–4963. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, Y.; Chen, Y.; Wang, B.; Wang, Y.; Zhou, J.; Liang, Z. Hot-injection synthesis of Cu-doped Cu2ZnSnSe4 nanocrystals to reach thermoelectric zT of 0.70 at 450 C. ACS Appl. Mater. Interfaces 2015, 7, 24403–24408. [Google Scholar] [CrossRef]
- Khadka, D.B.; Kim, S.; Kim, J. Ge-alloyed CZTSe thin film solar cell using molecular precursor adopting spray pyrolysis approach. RSC Adv. 2016, 6, 37621–37627. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (Version 58). Prog. Photovolt. Res. Appl. 2021, 29, 657–667. [Google Scholar] [CrossRef]
- Kato, T.; Hiroi, H.; Sakai, N.; Muraoka, S.; Sugimoto, H. Characterization of front and back interfaces on Cu2ZnSnS4 thin-film solar cells. In Proceedings of the 27th EU-PVSEC, Frankfurt, Germany, 24–28 September 2012; pp. 2236–2239. [Google Scholar]
- Tanaka, K.; Fukui, Y.; Moritake, N.; Uchiki, H. Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Sol. Energy Mater. Sol. Cells 2011, 95, 838–842. [Google Scholar] [CrossRef]
- Scragg, J.J.; Berg, D.M.; Dale, P.J. A 3.2% efficient Kesterite device from electrodeposited stacked elemental layers. J. Electroanal. Chem. 2010, 646, 52–59. [Google Scholar] [CrossRef]
- Shi, C.; Shi, G.; Chen, Z.; Yang, P.; Yao, M. Deposition of Cu2ZnSnS4 thin films by vacuum thermal evaporation from single quaternary compound source. Mater. Lett. 2012, 73, 89–91. [Google Scholar] [CrossRef]
- Chalapathy, R.; Jung, G.S.; Ahn, B.T. Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 3216–3221. [Google Scholar] [CrossRef]
Parameter | Sample Name | |||||
---|---|---|---|---|---|---|
CZTS As-Synthesized | CZTS As-Syn. Ink (S0) | CZTS-500 (S1) | CZTS-520 (S2) | CZTS-550 (S3) | ||
Phase | Kesterite | |||||
Scherrer | D (nm) | 6.34 | 7.47 | 16.21 | 24.81 | 108.54 |
δ (nm−2) | 0.02480 | 0.01787 | 0.00380 | 0.00162 | 0.00008 | |
Williamson–Hall | D (nm) | 5.39 | 5.30 | 8.68 | 19.75 | 60.28 |
ε (× 10−3) | −4.7 | −6.7 | −5.5 | −1.5 | −0.7 | |
δ (nm−2) | 0.03436 | 0.03552 | 0.01327 | 0.00256 | 0.00028 | |
Lattice Constant | a (Å) | 5.42 | 5.42 | 5.42 | 5.42 | 5.42 |
c (Å) | 10.86 | 10.86 | 10.87 | 10.87 | 10.87 | |
c/2a | 1.0007 | 1.0003 | 1.0033 | 1.0031 | 1.0021 | |
Lattice structure | tetragonal |
Sl. No | Sample Name | Cu/(Zn + Sn) | Zn/Sn | S/Metal |
---|---|---|---|---|
1 | S0 | 1.06 | 1.15 | 1.28 |
2 | S1 | 0.97 | 1.41 | 0.82 |
3 | S2 | 0.95 | 1.20 | 0.81 |
4 | S3 | 1.03 | 1.01 | 0.92 |
5 | S0_Na | 1.20 | 1.03 | 1.52 |
6 | S1_Na | 1.06 | 1.04 | 0.84 |
7 | S2_Na | 1.02 | 0.95 | 0.95 |
8 | S3_Na | 1.13 | 0.98 | 1.04 |
Sl. No. | Sample Name | Carrier Conc. (cm−3) | Mobility (cm2/V.s) | Resistivity (Ω cm) |
---|---|---|---|---|
1 | S1 | 1.53 × 1018 | 3.55 | 1.145 |
2 | S2 | 1.14 × 1018 | 2.39 | 2.294 |
3 | S3 | 6.83 × 1017 | 2.40 | 3.798 |
4 | S1_Na | 1.51 × 1018 | 3.28 | 1.257 |
5 | S2_Na | 9.15 × 1017 | 3.22 | 2.113 |
6 | S3_Na | 4.17 × 1017 | 2.20 | 6.804 |
Sl. No. | Sample Name | Voc (mV) | Jsc (mA/cm2) | FF (%) | η (%) |
---|---|---|---|---|---|
1 | SC-S1 | 280 | 0.48 | 38.64 | 0.05 |
2 | SC-S2 | 275 | 0.85 | 41.42 | 0.09 |
3 | SC-S3 | 320 | 0.74 | 44.25 | 0.10 |
4 | SC-S1_Na | 201 | 1.47 | 35.16 | 0.10 |
5 | SC-S2_Na | 274 | 1.61 | 37.48 | 0.16 |
6 | SC-S3_Na | 198 | 1.33 | 34.13 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahu, M.; Reddy, V.R.M.; Kim, B.; Patro, B.; Park, C.; Kim, W.K.; Sharma, P. Fabrication of Cu2ZnSnS4 Light Absorber Using a Cost-Effective Mechanochemical Method for Photovoltaic Applications. Materials 2022, 15, 1708. https://doi.org/10.3390/ma15051708
Sahu M, Reddy VRM, Kim B, Patro B, Park C, Kim WK, Sharma P. Fabrication of Cu2ZnSnS4 Light Absorber Using a Cost-Effective Mechanochemical Method for Photovoltaic Applications. Materials. 2022; 15(5):1708. https://doi.org/10.3390/ma15051708
Chicago/Turabian StyleSahu, Meenakshi, Vasudeva Reddy Minnam Reddy, Bomyung Kim, Bharati Patro, Chinho Park, Woo Kyoung Kim, and Pratibha Sharma. 2022. "Fabrication of Cu2ZnSnS4 Light Absorber Using a Cost-Effective Mechanochemical Method for Photovoltaic Applications" Materials 15, no. 5: 1708. https://doi.org/10.3390/ma15051708
APA StyleSahu, M., Reddy, V. R. M., Kim, B., Patro, B., Park, C., Kim, W. K., & Sharma, P. (2022). Fabrication of Cu2ZnSnS4 Light Absorber Using a Cost-Effective Mechanochemical Method for Photovoltaic Applications. Materials, 15(5), 1708. https://doi.org/10.3390/ma15051708