Study on Deterioration of Gray Brick with Different Moisture Contents under Freeze–Thaw Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of Specimens
2.1.1. Material Properties
2.1.2. Preparation of Specimens
2.2. Experiment Methods
2.2.1. Freeze–Thaw Test
2.2.2. Uniaxial Compression Test
2.2.3. Scanning Electron Microscope Test
3. Experimental Results
3.1. Appearance Change
3.2. Quality Change
3.3. Mechanical Properties
3.3.1. Damage Characteristics of Uniaxial Compression
3.3.2. Peak Strength
3.4. Microstructure Characteristics
4. Numerical Simulation of Freeze–Thaw Damage to Gray Bricks
4.1. Build Models
4.1.1. Model of Temperature Field
4.1.2. Model of Thermal Stress Field
4.2. Simulation Results
4.2.1. Simulation Results of Temperature Field
4.2.2. Simulation Results of Thermal Stress Field
5. Conclusions
- The freeze–thaw action has an impact on the macroscopic properties of gray brick. As the number of freeze–thaw cycles increases, the quality and peak strength show a downward trend. After 55 freeze–thaw cycles, the mass loss rate of gray brick with different moisture contents is greater than 6%, and the maximum peak strength reduction rate exceeds 30%.
- After 55 cycles under the same freeze–thaw conditions, when the initial moisture content is ≥80%, the mass loss rate and peak strength reduction rate of the sample are significantly greater than those below 80%. It can therefore be concluded that the initial moisture content has the greatest impact on the freeze–thaw damage of gray brick, and as such, ω = 80% may be defined as the upper limit of the moisture content. When the moisture content of gray brick is less than 80%, its mechanical properties show more obvious deterioration.
- Freeze–thaw action makes the edges of the gray brick particles rounded and removes their obvious angular features. With the increase in the number of freeze–thaw cycles, the pore diameter inside the gray brick increases, and cracks gradually develop.
- With more and more freeze–thaw cycles, the temperature of gray brick presents a circular distribution and changes layer by layer. The temperature changes inside the specimen always lag behind those on the surface, i.e., the temperature on the surface remains stable for longer than inside the brick. With an increase in the number of freeze–thaw cycles, the maximum thermal stress on the specimen model gradually increases, and the damage becomes more and more pronounced. Moreover, the areas severely affected by thermal stress are mainly concentrated on the outer surface center and side center of the test block model. The corners and inner center areas are less affected by thermal stress.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bie, Y.M. The Evolution Law of Structural Damage of Blue Brick Masonry under a Freeze-thaw Cycle. J. Shandong Agric. Univ. 2020, 51, 668–672. [Google Scholar] [CrossRef]
- Tang, Y.J.; Shao, Z.D. Research on the influence of climate on the performance deterioration of ancient Chinese tower bricks. Sci. Conserv. Archaeol. 2012, 24, 33–39. [Google Scholar] [CrossRef]
- Zhang, D.M.; Wang, L.; Guo, G.L.; Wang, Y.; Wang, W.C. The effect of freezing and thawing on the macroscopic properties and microstructure deterioration of ancient blue bricks. Sci. Conserv. Archaeol. 2021, 33, 9–15. [Google Scholar] [CrossRef]
- Kocáb, D.; Lišovský, M.; Žítt, P. Experimental determination of freeze-thaw resistance in self-compacting concretes. IOP Conf. Ser. Mater. Sci. Eng. 2019, 549, 012019. [Google Scholar] [CrossRef]
- Park, K.; Kim, K.; Lee, K.; Kim, D. Analysis of Effects of Rock Physical Properties Changes from Freeze-Thaw Weathering in Ny-Ålesund Region: Part 1—Experimental Study. Appl. Sci. 2020, 10, 1707. [Google Scholar] [CrossRef] [Green Version]
- Perrin, B.; Vu, N.A.; Multon, S.; Voland, T.; Ducroquetz, C. Mechanical behaviour of fired clay materials subjected to freeze–thaw cycles. Constr. Build. Mater. 2011, 25, 1056–1064. [Google Scholar] [CrossRef]
- Fukui, K.; Iba, C.; Taniguchi, M.; Takahashi, K.; Ogura, D. Experimental investigation and hygrothermal modelling of freeze-thaw process of saturated fired clay materials including supercooling phenomenon. E3S Web Conf. 2020, 172, 07011. [Google Scholar] [CrossRef]
- Viran, P.A.G.; Binal, A. Effects of repeated freeze-thaw cycles on physico-mechanical properties of cohesive soils. Arab. J. Geosci. 2018, 11, 250. [Google Scholar] [CrossRef]
- Li, Y.H.; Cai, Y.K.; Xie, H.R.; Zhang, J. Comparison of isothermal sorption properties of gray bricks in different ages in Wenzhou Qiaolou site. J. Southeast Univ. 2020, 50, 327–333. [Google Scholar] [CrossRef]
- Liu, J.B.; Zhang, Z.J. Characteristics and weathering mechanisms of the traditional Chinese blue brick from the ancient city of Ping Yao. R. Soc. Open Sci. 2020, 7, 200058. [Google Scholar] [CrossRef]
- Tang, Y.J.; Shao, Z.D.; Xu, T.L. Uniaxial compressive tests on ancient brick masonry from heritage buildings under unsaturated freeze-thaw conditions. Constr. Build. Mater. 2018, 183, 706–715. [Google Scholar] [CrossRef]
- Grubeša, I.N.; Vračević, M.; Ducman, V.; Marković, B.; Szenti, I.; Kukovecz, A. Influence of the Size and Type of Pores on Brick Resistance to Freeze-Thaw Cycles. Materials 2020, 13, 3717. [Google Scholar] [CrossRef] [PubMed]
- Uranjek, M.; Skrinar, M.; Imamović, D.; Peruš, I. Fragility Curves for Material Characteristics and Damage Index for Brick Masonry Exposed to Freeze-Thaw Action. Appl. Sci. 2021, 11, 10027. [Google Scholar] [CrossRef]
- Grubeša, I.N.; Vračević, M.; Ranogajec, M.; Vučetić, S. Influence of Pore-Size Distribution on the Resistance of Clay Brick to Freeze-Thaw Cycles. Materials 2020, 13, 2364. [Google Scholar] [CrossRef]
- Khanlari, K.; Sahamieh, R.Z.; Abdilor, Y. The effect of freeze-thaw cycles on physical and mechanical properties of Upper Red Formation sandstones, central part of Iran. Arab. J. Geosci. 2015, 8, 5991–6001. [Google Scholar] [CrossRef]
- Hosseini, M.; Khodayari, A.R. Effect of freeze-thaw cycle on strength and rock strength parameters (A Lushan sandstone case study). J. Min. Environ. 2019, 10, 257–270. [Google Scholar] [CrossRef]
- Kodama, J.; Goto, T.; Fujii, Y.; Hagan, P. The effects of water content, temperature and loading rate on strength and failure process of frozen rocks. Int. J. Rock Mech. Min. 2013, 62, 1–13. [Google Scholar] [CrossRef]
- Qiao, C.; Wang, Y.; Tong, Y.J.; Yang, H.P.; Li, C.H. Deterioration Characteristics of Pre-flawed Granites Subjected to Freeze-Thaw Cycles and Compression. Geotech. Geol. Eng. 2021, 39, 5907–5916. [Google Scholar] [CrossRef]
- Lv, W.T.; Yang, L.; Wei, Y.J.; Zang, M. Research on mechanism of freezing-thawing deterioration of gneisses in the Taxian area of Xinjiang. Hydrogeol. Eng. Geol. 2019, 46, 95–100. [Google Scholar] [CrossRef]
- Rong, H.R.; Gu, J.Y.; Rong, M.R.; Liu, H.; Zhang, J.Y.; Dong, H. Strength and Microscopic Damage Mechanism of Yellow Sandstone with Holes under Freezing and Thawing. Adv. Civ. Eng. 2020, 2020, 5921901. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Cai, Y.T.; Huang, S.B.; Guo, Y.L.; Liu, G.F. Effect of water saturation on uniaxial compressive strength and damage degree of clay-bearing sandstone under freeze-thaw. Bull. Eng. Geol. Environ. 2019, 79, 2021–2036. [Google Scholar] [CrossRef]
- Chen, T.C.; Yeung, M.R.; Mori, N. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action. Cold Reg. Sci. Technol. 2004, 38, 127–136. [Google Scholar] [CrossRef]
- Liu, B.; Sun, Y.D.; Yuan, Y.F.; Liu, X.C.; Bai, X.T.; Fang, T.J. Strength charateristics of frozen sandston with different water concent and strengthening mechanism. J. Chin. Univ. Min. Technol. 2020, 49, 1085–1093, 1127. [Google Scholar] [CrossRef]
- Chinese Standard GB/T 2542-2012; Test Methods for Wall Bricks. Chinese Standard: Beijing, China, 2013.
- Zhao, K.; Yang, D.X.; Zeng, P.; Hang, Z.; Wu, W.K.; Li, B.; Teng, T.Y. Effect of water content on the failure pattern and acoustic emission characteristics of red sandstone. Int. J. Rock Mech. Min. 2021, 142, 104709. [Google Scholar] [CrossRef]
- Zhou, M.L.; Li, J.L.; Luo, Z.S.; Sun, J.B.; Xu, F.; Jiang, Q.; Deng, H.F. Impact of water-rock interaction on the pore structures of red-bed soft rock. International. Sci. Rep. 2021, 11, 7398. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.S.; Liu, T.Y. Mesoscopic Weakening Feature of Marble during Water Rock Interaction. Sci. Rep. 2019, 37, 121–128. [Google Scholar] [CrossRef]
- Deng, H.F.; Xiao, Z.Y.; Li, J.L.; Hu, Y.Y.; Zhou, M.L. Deteriorating change rule test research of damage sandstone strength under water-rock interaction. Chin. J. Mech. Eng. 2015, 34, 2690–2698. [Google Scholar] [CrossRef]
- Huan, W.J.; Zhang, Y.S.; Liu, G.J.; Zhao, P. Performance deterioration and microstructure evolution of clay brick submitted to freeze-thaw cycles. J. Southeast Univ. 2014, 44, 401–405. [Google Scholar] [CrossRef]
- Huang, S.B.; Cai, Y.T.; Liu, Y.Z.; Liu, G.F. Experimental and Theoretical Study on Frost Deformation and Damage of Red Sandstones with Different Water Contents. Rock Mech. Rock Eng. 2021, 54, 4163–4181. [Google Scholar] [CrossRef]
- Chinese Standard GB/T 5101-2017; Fired Common Bricks. Chinese Standard: Beijing, China, 2018.
- Wang, X.; Zheng, D.; Wu, X.L.; Yao, Q. Mechanical mechanism of dacite damage deterioration under freeze-thaw cycles. Sci. Technol. Eng. 2021, 21, 10421–10429. [Google Scholar] [CrossRef]
- Niu, C.Y.; Zhu, Z.M.; Zhou, L.; Li, X.H.; Peng, Y.; Dong, Y.Q.; Deng, S. Study on the microscopic damage evolution and dynamic fracture properties of sandstone under freeze-thaw cycles. Cold Reg. Sci. Technol. 2021, 24, 103328. [Google Scholar] [CrossRef]
- Zhang, Z.R.; Feng, C.P.; Jiang, T.G.P.; Zhang, Y.L. Numerical simulation of freeze-thaw performance of recycled concrete based on ABAQUS. J. Changchun Inst. Technol. 2020, 21, 5–11. [Google Scholar] [CrossRef]
- Liu, Z.X.; Yan, Z.Q.; Meng, F.J.; Zhang, Z.X.; He, Z.X.; Jia, P. Physical and Mechanial Damage Characteristics of Sandatone under Freeze-Thaw Cycles. Low Temp. Archit. Technol. 2020, 42, 15–19. [Google Scholar]
- Chinese Standard GB 50003-2011; Code for Design of Masonry Structures. Chinese Standard: Beijing, China, 2012.
- Wang, X.Y.; Meng, J.Z.; Zhu, T.W. Study on Summer Solar Radiation and Thermal Environment Simulation of Qing Fu Mausoleum Building Heritage in Shenyang. World Archit. 2020, 10, 125–128, 137. [Google Scholar] [CrossRef]
- Wang, P.F. The Research of Heritage Building on Fire Simulation and Risk Prediction of Brick and Timber Structures. Master’s Thesis, Changan University, Xi’an, China, 2018. [Google Scholar]
Compound | SiO2 | Al2O3 | CaO | Fe2O3 | MgO | K2O | Na2O | TiO2 |
---|---|---|---|---|---|---|---|---|
Concentration (%) | 59.290 | 17.630 | 8.690 | 5.230 | 3.200 | 2.740 | 1.950 | 0.683 |
Moisture Content (%) | Peak Strength (MPa) | Strength Reduction Rate (%) | |
---|---|---|---|
Before Freeze–Thaw | After Freeze–Thaw | ||
20 | 7.41 | 6.06 | 18.22 |
40 | 5.86 | 4.49 | 23.38 |
60 | 2.81 | 2.14 | 23.84 |
80 | 8.84 | 6.53 | 26.13 |
100 | 6.13 | 4.24 | 30.83 |
Density (kg/m3) | Elastic Modulus (MPa) | Poisson’s Ratio | Coefficient of Thermal Expansion (°C−1) | Thermal Conductivity (W·m−1·K−1) | Specific Heat Capacity (J·kg−1·K−1) |
---|---|---|---|---|---|
1635 | 1807 | 0.15 | 5 × 10−6 | 0.81 | 1050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, J.; Ma, C.; Zhao, L.; Kong, Q.; Xu, X.; Wang, Z.; Chen, Y. Study on Deterioration of Gray Brick with Different Moisture Contents under Freeze–Thaw Environment. Materials 2022, 15, 1819. https://doi.org/10.3390/ma15051819
Yue J, Ma C, Zhao L, Kong Q, Xu X, Wang Z, Chen Y. Study on Deterioration of Gray Brick with Different Moisture Contents under Freeze–Thaw Environment. Materials. 2022; 15(5):1819. https://doi.org/10.3390/ma15051819
Chicago/Turabian StyleYue, Jianwei, Can Ma, Limin Zhao, Qingmei Kong, Xiangchun Xu, Zifa Wang, and Ying Chen. 2022. "Study on Deterioration of Gray Brick with Different Moisture Contents under Freeze–Thaw Environment" Materials 15, no. 5: 1819. https://doi.org/10.3390/ma15051819
APA StyleYue, J., Ma, C., Zhao, L., Kong, Q., Xu, X., Wang, Z., & Chen, Y. (2022). Study on Deterioration of Gray Brick with Different Moisture Contents under Freeze–Thaw Environment. Materials, 15(5), 1819. https://doi.org/10.3390/ma15051819