Properties of Fe–Si Alloy Anode for Lithium-Ion Battery Synthesized Using Mechanical Milling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Fe–Si Nanocomposite Materials
2.2. Material Characterization
2.3. Electrode Preparation
2.3.1. Electrode Preparation of 80 wt.% Fe–Si
2.3.2. Electrode Preparation of 15 wt.% Fe–Si
2.4. Cell Assembly
2.5. Electrochemical Investigations in Cells
2.5.1. Half-Cell Setups
2.5.2. Full-Cell Setups
3. Results and Discussion
3.1. Analysis of XRD Pattern
3.2. Cross-Section Analysis
3.3. Resistance Analysis
3.4. Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, C.M.; Kim, J.H.; Kim, H.; Sohn, H.J. Li-Alloy Based Anode Materials for Li Secondary Batteries. Chem. Soc. Rev. 2010, 39, 3115–3141. [Google Scholar] [CrossRef] [PubMed]
- Armand, M.; Tarascon, J.M. Building Better Batteries. Nature. 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Tarascon, J.M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tang, Y. Artificial Solid Electrolyte Interphase Acting as ‘Armor’ to Protect the Anode Materials for High-Performance Lithium-Ion Battery. Chem. Res. Chin. Univ. 2020, 36, 402–409. [Google Scholar] [CrossRef]
- Piper, D.M.; Travis, J.J.; Young, M.; Son, S.B.; Kim, S.C.; Oh, K.H.; George, S.M.; Ban, C.; Lee, S.H. Reversible High-Capacity Si Nanocomposite Anodes for Lithium-Ion Batteries Enabled by Molecular Layer Deposition. Adv. Mater. 2014, 26, 1596–1601. [Google Scholar] [CrossRef]
- Yim, C.H.; Courtel, F.M.; Abu-Lebdeh, Y. A High Capacity Silicon–Graphite Composite as Anode for Lithium-Ion Batteries Using Low Content Amorphous Silicon and Compatible Binders. J. Mater. Chem. A. 2013, 1, 8234–8243. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. Lithium Metal Anodes for Rechargeable Batteries. Energy Environ. Sci. 2014, 7, 513–537. [Google Scholar] [CrossRef]
- Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-Performance Lithium Battery Anodes Using Silicon Nanowires. Nature. Nanotechnol. 2008, 3, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J. A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries. J. Power Sources. 2011, 196, 13–24. [Google Scholar] [CrossRef]
- Moon, J.; Chang, S.; Gwak, Y.; Cho, K.; Cho, M. Multiscale Analysis of Lithiation of Si Anode of Li-Ion Batteries: First Principle Calculation and Finite Element Analysis. In ECS Meeting Abstracts; IOP Publishing: Bristol, UK, 2014; p. 648. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Chen, H.; Wang, Z.; Chen, D.; Cheng, Y.B.; Zhou, C.; Shen, G. Hierarchical Silicon Nanowires-Carbon Textiles Matrix as a Binder-Free Anode for High-Performance Advanced Lithium-Ion Batteries. Sci. Rep. 2013, 3, 1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, C.J.; Huggins, R.A. Chemical Diffusion in Intermediate Phases in the Lithium–Silicon System. J. Solid State Chem. 1981, 37, 271–278. [Google Scholar] [CrossRef]
- Çelikbilek, Z.; Can, S.; Lökçü, E.; Anik, M. Effect of rGO Loading on the Electrochemical Performance of Li22Si5/rGO Composite Anodes for Lithium-Ion Batteries. Int. J. Energy Res. 2021, 46, 137–1145. [Google Scholar] [CrossRef]
- Kim, H.; Lee, E.J.; Sun, Y.K. Recent Advances in the Si-Based Nanocomposite Materials as High Capacity Anode Materials for Lithium Ion Batteries. Mater. Today. 2014, 17, 285–297. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhong, L.; Huang, S.; Mao, S.X.; Zhu, T.; Huang, J.Y. Size-Dependent Fracture of Silicon Nanoparticles during Lithiation. ACS Nano. 2012, 6, 1522–1531. [Google Scholar] [CrossRef] [PubMed]
- Bruce, P.G.; Scrosati, B.; Tarascon, J.M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem. Int. Ed. Engl. 2008, 47, 2930–2946. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Seo, M.; Park, M.H.; Cho, J. A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries. Angew. Chem. Int. Ed Engl. 2010, 49, 2146–2149. [Google Scholar] [CrossRef] [PubMed]
- Fong, R.; von Sacken, U.; Dahn, J.R. Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. J. Electrochem. Soc. 1990, 137, 2009–2013. [Google Scholar] [CrossRef]
- Domi, Y.; Usui, H.; Nakabayashi, E.; Kimura, Y.; Sakaguchi, H. Effect of Element Substitution on Electrochemical Performance of Silicide/Si Composite Electrodes for Lithium-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 7438–7444. [Google Scholar] [CrossRef]
- Wang, H.; Fan, S.; Cao, Y.; Yang, H.; Ai, X.; Zhong, F. Building a Cycle-Stable Fe–Si Alloy/Carbon Nanocomposite Anode for Li-Ion Batteries through a Covalent-Bonding Method. ACS Appl. Mater. Interfaces. 2020, 12, 30503–30509. [Google Scholar] [CrossRef]
- Li, X.; Zheng, Y.; Li, Z.; Liu, Y.; Huang, H.; Wang, Q.; Dong, C. Effect of Dual Local Structures of Amorphous Fe–Si Films on the Performance of Anode of Lithium-Ion Batteries. Mater. Chem. Phys. 2020, 243, 122666. [Google Scholar] [CrossRef]
- Kumar, P.; Berhaut, C.L.; Zapata Dominguez, D.; De Vito, E.; Tardif, S.; Pouget, S.; Lyonnard, S.; Jouneau, P.H. Nano-Architectured Composite Anode Enabling Long-Term Cycling Stability for High-Capacity Lithium-Ion Batteries. Small. 2020, 16, e1906812. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, E.B.; Taha, M.A. Preparation of High Strength Graphene Reinforced Cu-Based Nanocomposites via Mechanical Alloying Method: Microstructural, Mechanical and Electrical Properties. Appl. Phys. A. 2020, 126, 220. [Google Scholar] [CrossRef]
- Chen, C.L. Microstructure and Mechanical Properties of AlCuNiFeCr High Entropy Alloy Coatings by Mechanical Alloying. Surf. Coatings Technol. 2020, 386, 125443. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Ivanov, E.; Boldyrev, V.V. The Science and Technology of Mechanical Alloying. Mater. Sci. Eng. A 2001, 304–306, 151–158. [Google Scholar] [CrossRef]
- Han, H.K.; Loka, C.; Yang, Y.M.; Kim, J.H.; Moon, S.W.; Cho, J.S.; Lee, K. High Capacity Retention Si/Silicide Nanocomposite Anode Materials Fabricated by High-Energy Mechanical Milling for Lithium-Ion Rechargeable Batteries. J. Power Sources 2015, 281, 293–300. [Google Scholar] [CrossRef]
- Chen, X.; Shi, L.; Zhou, J.; Goodenough, J.B. Effects of Ball Milling on Microstructures and Thermoelectric Properties of Higher Manganese Silicides. J. Alloys Compd. 2015, 641, 30–36. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Tian, H.; Xin, F.; Han, W. Scalable Fabrication of Micro-Sized Bulk Porous Si from Fe–Si Alloy as a High Performance Anode for Lithium-Ion Batteries. J. Mater. Chem. A. 2015, 3, 17956–17962. [Google Scholar] [CrossRef]
- Dézsi, I.; Fetzer, C.; Bujdosó, L.; Brötz, J.; Balogh, A.G. Mechanical Alloying of Fe–Si and Milling of α- and β-FeSi2 Bulk Phases. J. Alloys Compd. 2010, 508, 51–54. [Google Scholar] [CrossRef]
- Lee, H.Y.; Lee, S.M. Graphite-FeSi Alloy Composites as Anode Materials for Rechargeable Lithium Batteries. J. Power Sources. 2002, 112, 649–654. [Google Scholar] [CrossRef]
- Ahn, J.H.; Wang, G.X.; Liu, H.K.; Dou, S.X. Mechanically Milled Nanocrystalline Ni3Sn4 and FeSi2 Alloys as an Anode Material for Li-Ion Batteries. J. Metastable Nanocrystalline Mater. 2001, 10, 595–602. [Google Scholar] [CrossRef]
- Ma, Q.; Zhao, Y.; Hu, Z.; Qu, J.; Zhao, Z.; Xie, H.; Xing, P.; Wang, D.; Yin, H. Electrochemically Converting Micro-Sized Industrial Si/FeSi2 to Nano Si/FeSi for the High-Performance Lithium-Ion Battery Anode. Mater. Today Energy 2021, 21, 100817. [Google Scholar] [CrossRef]
- Dong, H.; Feng, R.X.; Ai, X.P.; Cao, Y.L.; Yang, H.X. Structural and Electrochemical Characterization of Fe–Si/C Composite Anodes for Li-Ion Batteries Synthesized by Mechanical Alloying. Electrochim. Acta. 2004, 49, 5217–5222. [Google Scholar] [CrossRef]
- Von Goldbeck, O.K. IRON—Binary Phase Diagrams; Springer: Cham, Switzerland, 1982; p. 15. [Google Scholar]
- Le Corre, C.; Genin, J.M. Transformation Mechanisms of the α⇆β Transition in FeSi2. Phys. Stat. Sol. 1972, 51, K85–K88. [Google Scholar] [CrossRef]
- Ruttert, M.; Siozios, V.; Winter, M.; Placke, T. Mechanochemical Synthesis of Fe–Si-Based Anode Materials for High-Energy Lithium Ion Full-Cells. ACS Appl. Energy Mater. 2020, 3, 743–758. [Google Scholar] [CrossRef] [Green Version]
- Dobysheva, L.V. Study of the 1:2 Region of Fe–Si System: The Interplay between α- and β-FeSi2. Scr. Mater. 2017, 133, 37–40. [Google Scholar] [CrossRef]
- Porsev, V.E.; Kolodkin, D.A.; Ul’yanov, A.L.; Elsukov, E.P. Initial Stage of Mechanical Alloying in a Binary System with Composition Si70Fe30. Phys. Metals Metallogr. 2013, 114, 953–961. [Google Scholar] [CrossRef]
- Kloc, C.; Arushanov, E.; Wendl, M.; Hohl, H.; Malang, U.; Bucher, E. Preparation and Properties of FeSi, α-FeSi2 and β-FeSi2 Single Crystals. J. Alloys Compd. 1995, 219, 93–96. [Google Scholar] [CrossRef]
- Yamada, H.; Katsumata, H.; Yuasa, D.; Uekusa, S.; Ishiyama, M.; Souma, H.; Azumaya, I. Structural and Electrical Properties of β-FeSi2 Bulk Materials for Thermoelectric Applications. Physics Procedia. 2012, 23, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Birkholz, U.; Schelm, J. Mechanism of Electrical Conduction in β-FeSi2. Phys. Stat. Sol. (b) 1968, 27, 413–425. [Google Scholar] [CrossRef]
- Kojima, T. Semiconducting and Thermoelectric Properties of Sintered Iron Disilicide. Phys. Stat. Sol. (a) 1989, 111, 233–242. [Google Scholar] [CrossRef]
- Abbassi, L.; Mesguich, D.; Berthebaud, D.; Le Tonquesse, S.; Srinivasan, B.; Mori, T.; Coulomb, L.; Chevallier, G.; Estournès, C.; Flahaut, E.; et al. Effect of Nanostructuring on the Thermoelectric Properties of β-FeSi2. Nanomaterials 2021, 11, 2852. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Sun, D.; Tang, Y.; Wang, H.; Shao, M. Understanding and Improving the Initial Coulombic Efficiency of High-Capacity Anode Materials for Practical Sodium Ion Batteries. Energy Storage Mater. 2019, 23, 233–251. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Liu, T.; Gao, X.; Li, S.; Ling, M.; Liang, C.; Zheng, J.; Lin, Z. Silicon Anode with High Initial Coulombic Efficiency by Modulated Trifunctional Binder for High-Areal-Capacity Lithium-Ion Batteries. Adv. Energy Mater. 2020, 10, 1903110. [Google Scholar] [CrossRef]
- Thieu, D.T.; Fawey, M.H.; Bhatia, H.; Diemant, T.; Chakravadhanula, V.S.K.; Behm, R.J.; Kübel, C.; Fichtner, M. CuF2 as Reversible Cathode for Fluoride Ion Batteries. Adv. Funct. Mater. 2017, 27, 1701051. [Google Scholar] [CrossRef]
- Winter, M. The Solid Electrolyte Interphase—The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries. Z. Phys. Chem. 2009, 223, 1395–1406. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, J.; Li, H.; Nuli, Y.; Wang, J. Electrolytes for advanced lithium ion batteries using silicon-based anodes. J. Mater. Chem. A. 2019, 7, 9432–9446. [Google Scholar] [CrossRef]
Evaluation Conditions | Division | |
---|---|---|
C-Rate | Number of Lithiation/De-Lithiation Cycles | |
0.1 C | 1 cycle | Acceleration |
0.2 C | 1 cycle | |
0.5 C | 5 cycles | |
1.0 C | 5 cycles | |
2.0 C | 5 cycles | |
3.0 C | 5 cycles | |
2.0 C | 5 cycles | Recovery |
1.0 C | 5 cycles | |
0.5 C | 5 cycles | |
0.2 C | 1 cycle | |
0.1 C | 1 cycle |
Milling Time (h) | Formula (wt.%) | Si Crystallite Size (nm) | |
---|---|---|---|
FeSi2 | Si | ||
2 | 74.1 | 25.9 | 5.8 |
6 | 74.0 | 26.0 | 3.86 |
12 | 74.0 | 26.0 | 2.47 |
24 | 74.6 | 25.4 | 2.27 |
2 h | 6 h | 12 h | 24 h | |
---|---|---|---|---|
Charge capacity (mAh/g) | 1323 | 1291 | 1286 | 1220 |
Discharge capacity (mAh/g) | 1215 | 1181 | 1186 | 1120 |
Initial Coulombic Efficiency (%) | 91.8 | 91.5 | 92.2 | 91.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Jeong, J.; Chu, Y.; Kim, J.; Oh, K.; Moon, J. Properties of Fe–Si Alloy Anode for Lithium-Ion Battery Synthesized Using Mechanical Milling. Materials 2022, 15, 1873. https://doi.org/10.3390/ma15051873
Lee K, Jeong J, Chu Y, Kim J, Oh K, Moon J. Properties of Fe–Si Alloy Anode for Lithium-Ion Battery Synthesized Using Mechanical Milling. Materials. 2022; 15(5):1873. https://doi.org/10.3390/ma15051873
Chicago/Turabian StyleLee, Kikang, Jejun Jeong, Yeoneyi Chu, Jongbeom Kim, Kyuhwan Oh, and Jeongtak Moon. 2022. "Properties of Fe–Si Alloy Anode for Lithium-Ion Battery Synthesized Using Mechanical Milling" Materials 15, no. 5: 1873. https://doi.org/10.3390/ma15051873
APA StyleLee, K., Jeong, J., Chu, Y., Kim, J., Oh, K., & Moon, J. (2022). Properties of Fe–Si Alloy Anode for Lithium-Ion Battery Synthesized Using Mechanical Milling. Materials, 15(5), 1873. https://doi.org/10.3390/ma15051873