pH-Sensitive Silver-Containing Carbon Dots Based on Folic Acid
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Apparatus
2.2. Preparation of Ag-Containing Carbon Dots (Ag-CDs)
2.3. Effect of pH on the Fluorescence of Ag-CDs
2.4. pH Fluorescent Test Paper
3. Results and discussion
3.1. Morphology and Composition of Ag-CDs
3.2. Assignment of the Electronic Absorption Origins of the Fluorescent Species of Ag-CDs in Neutral Solution
3.3. pH-Regulating Fluorescent Variation in Ag-CDs
3.4. Structural Mechanism of pH-Regulating Fluorescence of Ag-CDs
3.5. Fluorescent Reversibility Ag-CDs upon the Variation in pH
3.6. pH Fluorescent Test Paper
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, S.-Y.; Shen, W.; Gao, Z.-Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C 2014, 2, 6921–6939. [Google Scholar] [CrossRef] [Green Version]
- Mansuriya, B.D.; Altintas, Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care—An Updated Review (2018–2021). Nanomaterials 2021, 11, 2525. [Google Scholar] [CrossRef] [PubMed]
- Jorns, M.; Pappas, D. A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials 2021, 11, 1448. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Gupta, A.; Verma, N.C.; Nandi, C.K. Time-Resolved Emission Reveals Ensemble of Emissive States as the Origin of Multicolor Fluorescence in Carbon Dots. Nano Lett. 2015, 15, 8300–8305. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Li, M.; Li, Q.; Liang, S.; Tan, Y.; Sheng, L.; Shi, W.; Zhang, S.X.-A. Carbon Dots with Continuously Tunable Full-Color Emission and Their Application in Ratiometric pH Sensing. Chem. Mater. 2014, 26, 3104–3112. [Google Scholar] [CrossRef]
- Wen, X.; Yu, P.; Toh, Y.-R.; Hao, X.; Tang, J. Intrinsic and Extrinsic Fluorescence in Carbon Nanodots: Ultrafast Time-Resolved Fluorescence and Carrier Dynamics. Adv. Opt. Mater. 2013, 1, 173–178. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, S.; Wang, H.-Y.; Qu, S.-N.; Zhang, Y.-L.; Zhang, J.; Chen, Q.-D.; Xu, H.-L.; Han, W.; Yang, B.; et al. Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots. ACS Nano 2014, 8, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.-W.; Hsieh, M.-L.; Liu, W.-R. A facile approach to synthesize carbon quantum dots with pH-dependent properties. Dyes Pigments 2019, 169, 73–80. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, T.G.A.; Ballal, A.; Ghosh, S.K.; Kumbhakar, M. Origin of Excitation Dependent Fluorescence in Carbon Nanodots. J. Phys. Chem. Lett. 2016, 7, 3695–3702. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Kulinich, S.; Liu, Y.; Zeng, H. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci. Rep. 2014, 4, 4976. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens. Bioelectron. 2014, 55, 83–90. [Google Scholar] [CrossRef]
- Pathak, A.; Venugopal, P.; Nair, B.G.; Suneesh, P.V.; Babu, S.T.G. Facile pH-sensitive optical detection of pathogenic bacteria and cell imaging using multi-emissive nitrogen-doped carbon dots. Microchem. J. 2020, 159, 105324. [Google Scholar] [CrossRef]
- Khan, W.U.; Wang, D.; Wang, Y. Highly Green Emissive Nitrogen-Doped Carbon Dots with Excellent Thermal Stability for Bioimaging and Solid-State LED. Inorg. Chem. 2018, 57, 15229–15239. [Google Scholar] [CrossRef]
- Barati, A.; Shamsipur, M.; Abdollahi, H. Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH. Anal. Chim. Acta 2016, 931, 25–33. [Google Scholar] [CrossRef]
- Mondal, T.K.; Saha, S.K. Facile Approach To Synthesize Nitrogen- and Oxygen-Rich Carbon Quantum Dots for pH Sensor, Fluorescent Indicator, and Invisible Ink Applications. ACS Sustain. Chem. Eng. 2019, 7, 19669–19678. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Chen, C.-Y.; Peng, D.-P.; Zhou, Y.-Z.; Zhuang, J.-L.; Zhang, X.-J.; Lei, B.-F.; Liu, Y.-L.; Hu, C.-F. pH-Responsive carbon dots with red emission for real-time and visual detection of amines. J. Mater. Chem. C 2020, 8, 11563–11571. [Google Scholar] [CrossRef]
- Sun, X.-F.; Chen, M.-J.; Zhang, Y.-Q.; Yin, Y.-J.; Zhang, L.-W.; Li, H.-G.; Hao, J.-C. Photoluminescent and pH-Responsive Su-pramolecular Structures from Co-assembly of Carbon Quantum Dots and Zwitterionic Surfactant Micelles. J. Mater. Chem. B 2018, 6, 7021–7032. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Gan, Z.; Zhu, X.; Li, T.; Wu, X.; Chu, P.K. Emission from Trions in Carbon Quantum Dots. J. Phys. Chem. C 2015, 119, 2956–2962. [Google Scholar] [CrossRef]
- Chauhan, P.; Mundekkad, D.; Mukherjee, A.; Chaudhary, S.; Umar, A.; Baskoutas, S. Coconut Carbon Dots: Progressive Large-Scale Synthesis, Detailed Biological Activities and Smart Sensing Aptitudes towards Tyrosine. Nanomaterials 2022, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Kalaiyarasan, G.; Joseph, J. Determination of vitamin B12 via pH-dependent quenching of the fluorescence of nitrogen doped carbon quantum dots. Microchim. Acta 2017, 184, 3883–3891. [Google Scholar] [CrossRef]
- Ma, Z.; Ma, Y.; Gu, M.; Huo, X.; Ma, S.; Lu, Y.; Ning, Y.; Zhang, X.; Tian, B.; Feng, Z. Carbon Dots Derived from the Maillard Reaction for pH Sensors and Cr (VI) Detection. Nanomaterials 2020, 10, 1924. [Google Scholar] [CrossRef]
- Das, P.; Maruthapandi, M.; Saravanan, A.; Natan, M.; Jacobi, G.; Banin, E.; Gedanken, A. Carbon Dots for Heavy-Metal Sens-ing, pH-Sensitive Cargo Delivery, and Antibacterial Applications. ACS Appl. Nano Mater. 2020, 3, 11777–11790. [Google Scholar] [CrossRef]
- Wang, C.; Xu, Z.; Zhang, C. Polyethyleneimine-Functionalized Fluorescent Carbon Dots: Water Stability, pH Sensing, and Cellular Imaging. ChemNanoMat 2015, 1, 122–127. [Google Scholar] [CrossRef]
- Qian, Z.; Ma, J.; Shan, X.; Feng, H.; Shao, L.; Chen, J. Highly Luminescent N-Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform. Chem. A Eur. J. 2014, 20, 2254–2263. [Google Scholar] [CrossRef]
- Gao, X.-H.; Lu, Y.-Z.; Zhang, R.-Z.; He, S.-J.; Ju, J.; Liu, M.-M.; Li, L.; Chen, W. One-pot synthesis of carbon nanodots for fluo-rescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence. J. Mater. Chem. C 2015, 3, 2302–2309. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Zhang, W.; Qin, X.; Zhu, C. Carbon quantum dots derived from pure solvent tetrahydrofuran as a fluorescent probe to detect pH and silver ion. J. Photochem. Photobiol. A Chem. 2019, 382, 111981. [Google Scholar] [CrossRef]
- Zhuo, S.J.; Fang, J.; Wang, J.; Zhu, C.-Q. One-step hydrothermal synthesis of silver-doped carbon quantum dots for highly selective detection of uric acid. Methods Appl. Fluoresc. 2020, 8, 015005. [Google Scholar] [CrossRef] [PubMed]
- Shekarbeygi, Z.; Karami, C.; Esmaeili, E.; Moradi, S.; Shahlaei, M. Development of Ag nanoparticle-carbon quan-tum dot nanocomplex as fluorescence sensor for determination of gemcitabine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 262, 120148. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.G.; Nguyen, D.D.; Jang, W.; Kim, J.K.; Wang, D.H. Formulation of conductive nanocomposites by incorporating silver-doped carbon quantum dots for efficient charge extraction. Int. J. Energy Res. 2021, 45, 21324–21339. [Google Scholar] [CrossRef]
- Yang, S.-W.; Sun, J.; Li, X.-B.; Zhou, W.; Wang, Z.-Y.; He, P.; Ding, G.-Q.; Xie, X.-M.; Kang, Z.-H.; Jiang, M.-H. Large-scale fab-rication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J. Mater. Chem. A 2014, 2, 8660–8667. [Google Scholar] [CrossRef]
- Gong, X.; Lu, W.; Paau, M.C.; Hu, Q.; Wu, X.; Shuang, S.; Dong, C.; Choi, M.M. Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging. Anal. Chim. Acta 2015, 861, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yang, Q.; Li, Z.; Hao, J. Green synthesis of luminescent carbon dots and carbon-coated metal particles: Two birds with one stone. Colloids Surf. A Physicochem. Eng. Asp. 2015, 485, 34–41. [Google Scholar] [CrossRef]
- Bischoff, D.; Varlet, A.; Simonet, P.; Eich, M.; Overweg, H.C.; Ihn, T.; Ensslin, K. Localized charge carriers in graphene nanodevices. Appl. Phys. Rev. 2015, 2, 031301. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, V.M.; Komeri, R.; Victor, S.P.; Muthu, J. Photoluminescent PEG based comacromers as excitation dependent fluor-ophores for biomedical applications. Colloids Surf. B Biointerfaces 2015, 135, 243–252. [Google Scholar] [CrossRef]
- Park, H.; Noh, S.H.; Lee, J.H.; Lee, W.J.; Jaung, J.Y.; Lee, S.G.; Han, T.H. Large Scale Synthesis and Light Emitting Fibers of Tailor-Made Graphene Quantum Dots. Sci. Rep. 2015, 5, 14163. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Feng, M.; Chen, X.; Tang, X. N-dots as a photoluminescent probe for the rapid and selective detection of Hg2+ and Ag+ in aqueous solution. J. Mater. Chem. B 2016, 4, 2086–2089. [Google Scholar] [CrossRef]
- Zhou, Z.-X.; Shen, Y.-F.; Li, Y.; Liu, A.-R.; Liu, S.-Q.; Zhang, Y.J. Chemical Cleavage of Layered Carbon Nitride with Enhanced Photoluminescent Performances and Photoconduction. ACS Nano 2015, 9, 12480–12487. [Google Scholar] [CrossRef]
- Li, H.; Sun, C.; Vijayaraghavan, R.; Zhou, F.; Zhang, X.; MacFarlane, D.R. Long lifetime photoluminescence in N, S co-doped carbon quantum dots from an ionic liquid and their applications in ultrasensitive detection of pesticides. Carbon 2016, 104, 33–39. [Google Scholar] [CrossRef]
- Fan, X.; Qin, X.; Jing, L.; Luan, Y.; Xie, M. Controllable synthesis of floatable nanocrystalline Ag2S and Ag by a silane coupling agent-modified solvothermal method. Mater. Res. Bull. 2012, 47, 3732–3737. [Google Scholar] [CrossRef]
- Bao, L.; Zhang, Z.-L.; Tian, Z.-Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B.-P.; Pang, D.W. Electrochemical tuning of luminescent car-bon nanodots: From preparation to luminescence mechanism. Adv. Mater. 2011, 23, 5801–5806. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-X.; Ding, S.-N. One-pot green synthesis of high quantum yield oxygen-doped, nitrogen-rich, photoluminescent polymer carbon nanoribbons as an effective fluorescent sensing platform for sensitive and selective detection of silver (I) and mercury (II) ions. Anal. Chem. 2014, 86, 7436–7445. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, J.-F.; He, D.-G.; He, X.-X.; Wang, K.-M.; Xu, F.-Z.; Liu, J.-Q.; Tang, J.-L.; Yang, X.; Huang, J. Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing. Anal. Chem. 2016, 88, 7837–7843. [Google Scholar] [CrossRef] [PubMed]
- Hai, X.; Wang, Y.-T.; Hao, X.-Y.; Wang, J.-H. Folic acid encapsulated graphene quantum dots for ratiometric pH sensing and specific multicolor imaging in living cells. Sens. Actuators B Chem. 2018, 268, 61–69. [Google Scholar] [CrossRef]
- Wang, C.-X.; Xu, Z.-Z.; Cheng, H.; Lin, H.-H.; Humphrey, M.-G.; Zhang, C. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon 2015, 82, 87–95. [Google Scholar] [CrossRef]
- Du, F.-K.; Ming, Y.H.; Zeng, F.; Yu, C.-G.; Wu, S.-Z. A low cytotoxic and ratiometric fluorescent nanosensor based on carbon-dots for intracellular pH sensing and mapping. Nanotechnology 2013, 24, 365101. [Google Scholar] [CrossRef]
- Liao, S. Huang, X.-Q. Yang, H.; Chen, X.-Q. Nitrogen-doped carbon quantum dots as a fluorescent probe to detect copper ions, glutathione, and intracellular pH. Anal. Bioanal. Chem. 2018, 410, 7701–7710. [Google Scholar] [CrossRef]
- Sun, Y.-Q.; Wang, X.-J.; Wang, C.; Tong, D.-Y.; Wu, Q.; Jiang, K.-L.; Jiang, Y.-N; Wang, C.-X.; Yang, M.-H. Red emitting and highly stable carbon dots with dual response to pH values and ferric ions. Microchim. Acta 2018, 185, 83. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Li, K.; Wang, P. pH-Sensitive Silver-Containing Carbon Dots Based on Folic Acid. Materials 2022, 15, 1880. https://doi.org/10.3390/ma15051880
Xu Q, Li K, Wang P. pH-Sensitive Silver-Containing Carbon Dots Based on Folic Acid. Materials. 2022; 15(5):1880. https://doi.org/10.3390/ma15051880
Chicago/Turabian StyleXu, Qinhai, Kang Li, and Peng Wang. 2022. "pH-Sensitive Silver-Containing Carbon Dots Based on Folic Acid" Materials 15, no. 5: 1880. https://doi.org/10.3390/ma15051880
APA StyleXu, Q., Li, K., & Wang, P. (2022). pH-Sensitive Silver-Containing Carbon Dots Based on Folic Acid. Materials, 15(5), 1880. https://doi.org/10.3390/ma15051880