Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly(l-lactide-co-caprolactone) Scaffold
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Electrospinning and Hydrolytic Modification
2.1.2. Characterization
2.2. Stem Cell Study-Related Methods
2.2.1. Patients
2.2.2. hDPSC Isolation
2.2.3. hDPSC Culture
2.2.4. hDPSC Phenotype Identification
Flow Cytometry Analysis
2.2.5. Multilineage Differentiation Potential
Chondrogenic Differentiation
Osteogenic Differentiation
Adipogenic Differentiation
2.3. Preparation of the hDPSCs-PLCL Scaffold Construct
2.3.1. Impact of the PLCL Membrane on hDPSC Viability
2.3.2. Adhesion of hDPSCs to the PLCL Scaffold
2.3.3. Assessment of hDPSCs Spread and Population Doubling Time (PDT) onto the PLCL Scaffold
2.3.4. Cell Membrane Staining with the PKH26 Fluorescent Dye
2.3.5. Morphological Features and Immunophenotype of hDPSCs Grown on the PLCL Scaffold
2.3.6. Osteogenic Capabilities of hDPSCs Grown on PLCL Scaffold
2.3.7. Total RNA Isolation, Reverse Transcription and Quantitative Polymerase Chain Reaction (qRT-PCR)
2.4. Antibodies
2.4.1. Immunohistochemical Staining (IHC)
2.4.2. Immunohistochemical Staining Interpretation
2.4.3. Immunofluorescence Technique
2.5. Statistical Analysis
3. Results
3.1. Characterization of the PLCL Scaffold
3.2. Morphological Features of the hDPSC Culture
3.3. Immunophenotypes of Cells Isolated from Dental Pulp Tissue
3.4. Evaluation of hDPSC Multipotency
3.5. Morphology of hDPSCs Growing on the Membrane
3.6. Expression of Surface Antigens in hDPSCs Growing on the Membrane
3.7. Viability, Adhesion and Spreading of hDPSCs Grown on the PLCL Scaffold
3.8. Cell Proliferation of hDPSCs Grown on the Membrane
3.9. Doubling of the hDPSC Population
3.10. Osteogenic Differentiation of hDPSCs on PLCL Scaffold, Mineralization, Bone-Related Proteins Expression
3.11. Osteogenic Differentiation of hDPSCs on PLCL Scaffold, qRT-PCR Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garg, P.; Mazur, M.M.; Buck, A.C.; Wandtke, M.E.; Liu, J.; Ebraheim, N.A. Prospective Review of Mesenchymal Stem Cells Differentiation into Osteoblasts. Orthop. Surg. 2017, 9, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsutsui, T.W. Dental Pulp Stem Cells: Advances to Applications. Stem Cells Cloning 2020, 13, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Tong, S.; Zhang, R.; Zhu, T.; Wang, X. In Vitro Evaluation of a Bone Morphogenetic Protein-2 Nanometer Hydroxyapatite Collagen Scaffold for Bone Regeneration. Mol. Med. Rep. 2018, 17, 5830–5836. [Google Scholar] [CrossRef]
- Soares, D.G.; Zhang, Z.; Mohamed, F.; Eyster, T.W.; de Souza Costa, C.A.; Ma, P.X. Simvastatin and Nanofibrous Poly(l-lactic acid) Scaffolds to Promote the Odontogenic Potential of Dental Pulp Cells in an Inflammatory Environment. Acta Biomater. 2018, 68, 190–203. [Google Scholar] [CrossRef] [Green Version]
- Gadalla, D.; Goldstein, A.S. Improving the Osteogenicity of PCL Fiber Substrates by Surface-Immobilization of Bone Morphogenic Protein-2. Ann. Biomed. Eng. 2020, 48, 1006–1015. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; Liu, Y.; Yu, W.; Sun, Q. Biocompatibility of Biological Material Polylactic Acid with Stem Cells from Human Exfoliated Deciduous Teeth. Biomed. Rep. 2017, 6, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Fouad, H.; AlFotawi, R.; Alothman, O.Y.; Alshammari, B.A.; Alfayez, M.; Hashem, M.; Mahmood, A. Porous Polyethylene Coated with Functionalized Hydroxyapatite Particles as a Bone Reconstruction Material. Materials 2018, 11, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousefi, A.-M.; James, P.F.; Akbarzadeh, R.; Subramanian, A.; Flavin, C.; Oudadesse, H. Prospect of Stem Cells in Bone Tissue Engineering: A Review. Stem Cells Int. 2016, 2016, 6180487. [Google Scholar] [CrossRef] [Green Version]
- Yousefzade, O.; Katsarava, R.; Puiggalí, J. Biomimetic Hybrid Systems for Tissue Engineering. Biomimetics 2020, 5, 49. [Google Scholar] [CrossRef]
- Paim, Á.; Tessaro, I.C.; Cardozo, N.S.M.; Pranke, P. Mesenchymal Stem Cell Cultivation in Electrospun Scaffolds: Mechanistic Modeling for Tissue Engineering. J. Biol. Phys. 2018, 44, 245–271. [Google Scholar] [CrossRef]
- Gugliandolo, A.; Fonticoli, L.; Trubiani, O.; Rajan, T.S.; Marconi, G.D.; Bramanti, P.; Mazzon, E.; Pizzicannella, J.; Diomede, F. Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials. Int. J. Mol. Sci. 2021, 22, 5236. [Google Scholar] [CrossRef] [PubMed]
- Baldión, P.A.; Velandia-Romero, M.L.; Castellanos, J.E. Odontoblast-Like Cells Differentiated from Dental Pulp Stem Cells Retain Their Phenotype after Subcultivation. Int. J. Cell Biol. 2018, 2018, 6853189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasui, T.; Mabuchi, Y.; Morikawa, S.; Onizawa, K.; Akazawa, C.; Nakagawa, T.; Okano, H.; Matsuzaki, Y. Isolation of Dental Pulp Stem Cells with High Osteogenic Potential. Inflamm. Regen. 2017, 37, 8. [Google Scholar] [CrossRef] [PubMed]
- Kunimatsu, R.; Nakajima, K.; Awada, T.; Tsuka, Y.; Abe, T.; Ando, K.; Hiraki, T.; Kimura, A.; Tanimoto, K. Comparative Characterization of Stem Cells from Human Exfoliated Deciduous Teeth, Dental Pulp, and Bone Marrow-Derived Mesenchymal Stem Cells. Biochem. Biophys. Res. Commun. 2018, 501, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, S.; Nan, X.; Wei, H.; Shi, J.; Li, A.; Gou, J. Repair of Human Periodontal Bone Defects by Autologous Grafting Stem Cells Derived from Inflammatory Dental Pulp Tissues. Stem Cell Res. Ther. 2016, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, A.; Manescu, A.; Langer, M.; Rustichelli, F.; Desiderio, V.; Paino, F.; De Rosa, A.; Laino, L.; d’Aquino, R.; Tirino, V.; et al. Three Years after Transplants in Human Mandibles, Histological and in-Line Holotomography Revealed That Stem Cells Regenerated a Compact Rather than a Spongy Bone: Biological and Clinical Implications. Stem Cells Transl. Med. 2013, 2, 316–324. [Google Scholar] [CrossRef]
- Nakashima, M.; Iohara, K.; Murakami, M.; Nakamura, H.; Sato, Y.; Ariji, Y.; Matsushita, K. Pulp Regeneration by Transplantation of Dental Pulp Stem Cells in Pulpitis: A Pilot Clinical Study. Stem Cell Res. Ther. 2017, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Alipour, M.; Firouzi, N.; Aghazadeh, Z.; Samiei, M.; Montazersaheb, S.; Khoshfetrat, A.B.; Aghazadeh, M. The Osteogenic Differentiation of Human Dental Pulp Stem Cells in Alginate-Gelatin/Nano-Hydroxyapatite Microcapsules. BMC Biotechnol. 2021, 21, 6. [Google Scholar] [CrossRef]
- Ercal, P.; Pekozer, G.G. A Current Overview of Scaffold-Based Bone Regeneration Strategies with Dental Stem Cells. Adv. Exp. Med. Biol. 2020, 1288, 61–85. [Google Scholar] [CrossRef]
- Hutmacher, D.W.; Singh, H. Computational Fluid Dynamics for Improved Bioreactor Design and 3D Culture. Trends Biotechnol. 2008, 26, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Rather, H.; Vasita, R. Dual Functional Approaches for Osteogenesis Coupled Angiogenesis in Bone Tissue Engineering. Mater. Sci. Eng. C 2019, 103, 109761. [Google Scholar] [CrossRef]
- Granz, C.L.; Gorji, A. Dental Stem Cells: The Role of Biomaterials and Scaffolds in Developing Novel Therapeutic Strategies. World J. Stem Cells 2020, 12, 897–921. [Google Scholar] [CrossRef]
- Rico-Llanos, G.A.; Borrego-González, S.; Moncayo-Donoso, M.; Becerra, J.; Visser, R. Collagen Type I Biomaterials as Scaffolds for Bone Tissue Engineering. Polymers 2021, 13, 599. [Google Scholar] [CrossRef]
- Willerth, S.M.; Sakiyama-Elbert, S.E. Combining Stem Cells and Biomaterial Scaffolds for Constructing Tissues and Cell Delivery. StemJournal 2019, 1, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, G.; Clarke, J.; Picard, F.; Riches, P.; Jia, L.; Han, F.; Li, B.; Shu, W. 3D Bioactive Composite Scaffolds for Bone Tissue Engineering. Bioact. Mater. 2017, 3, 278–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chocholata, P.; Kulda, V.; Babuska, V. Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials 2019, 12, 568. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Goh, C.; Shrestha, A. Biomaterial Properties Modulating Bone Regeneration. Macromol. Biosci. 2021, 21, e2000365. [Google Scholar] [CrossRef]
- Wang, S.; Suhaimi, H.; Mabrouk, M.; Georgiadou, S.; Ward, J.P.; Das, D.B. Effects of Scaffold Pore Morphologies on Glucose Transport Limitations in Hollow Fibre Membrane Bioreactor for Bone Tissue Engineering: Experiments and Numerical Modelling. Membranes 2021, 11, 257. [Google Scholar] [CrossRef]
- Lutzweiler, G.; Ndreu Halili, A.; Engin Vrana, N. The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation. Pharmaceutics 2020, 12, 602. [Google Scholar] [CrossRef]
- Abbasi, N.; Hamlet, S.; Love, R.M.; Nguyen, N.-T. Porous Scaffolds for Bone Regeneration. J. Sci. Adv. Mater. Devices 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Ferreira, B.M.P.; Andersson, N.; Atterling, E.; Engqvist, J.; Hall, S.; Dicko, C. 3D Structure and Mechanics of Silk Sponge Scaffolds Is Governed by Larger Pore Sizes. Front. Mater. 2020, 7, 211. [Google Scholar] [CrossRef]
- Nemati, S.; Kim, S.-J.; Shin, Y.M.; Shin, H. Current Progress in Application of Polymeric Nanofibers to Tissue Engineering. Nano Converg. 2019, 6, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, K.; Kunimatsu, R.; Ando, K.; Ando, T.; Hayashi, Y.; Kihara, T.; Hiraki, T.; Tsuka, Y.; Abe, T.; Kaku, M.; et al. Comparison of the Bone Regeneration Ability between Stem Cells from Human Exfoliated Deciduous Teeth, Human Dental Pulp Stem Cells and Human Bone Marrow Mesenchymal Stem Cells. Biochem. Biophys. Res. Commun. 2018, 497, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Monti, M.; Graziano, A.; Rizzo, S.; Perotti, C.; Del Fante, C.; d’Aquino, R.; Redi, C.A.; Rodriguez, Y.; Baena, R. In Vitro and In Vivo Differentiation of Progenitor Stem Cells Obtained After Mechanical Digestion of Human Dental Pulp. J. Cell Physiol. 2017, 232, 548–555. [Google Scholar] [CrossRef]
- Chrepa, V.; Austah, O.; Diogenes, A. Evaluation of a Commercially Available Hyaluronic Acid Hydrogel (Restylane) as Injectable Scaffold for Dental Pulp Regeneration: An In Vitro Evaluation. J. Endod. 2017, 43, 257–262. [Google Scholar] [CrossRef]
- Trivedi, S.; Srivastava, K.; Saluja, T.S.; Shyam, H.; Kumar, S.; Singh, A.; Saxena, S.K.; Mehrotra, D.; Singh, S.K. Hydroxyapatite-Collagen Augments Osteogenic Differentiation of Dental Pulp Stem Cells. Odontology 2020, 108, 251–259. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, Y.; Feng, K.-C.; Chuang, Y.-C.; Zuo, X.; Zhou, Y.; Chang, C.-C.; Simon, M.; Rafailovich, M. Templated Dentin Formation by Dental Pulp Stem Cells on Banded Collagen Bundles Nucleated on Electrospun Poly(4-vinyl pyridine) Fibers in Vitro. Acta Biomater. 2018, 76, 80–88. [Google Scholar] [CrossRef]
- Alipour, M.; Aghazadeh, M.; Akbarzadeh, A.; Vafajoo, Z.; Aghazadeh, Z.; Raeisdasteh Hokmabad, V. Towards Osteogenic Differentiation of Human Dental Pulp Stem Cells on PCL-PEG-PCL/Zeolite Nanofibrous Scaffolds. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3431–3437. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Sanchez, C.; Kowalczyk, T.; Ruiz De Eguino, G.; Lopez-Arraiza, A.; Infante, A.; Rodriguez, C.I.; Kowalewski, T.A.; Sarrionandia, M.; Aurrekoetxea, J. Electrospinning of Poly(lactic acid)/Polyhedral Oligomeric Silsesquioxane Nanocomposites and Their Potential in Chondrogenic Tissue Regeneration. J. Biomater. Sci. Polym. Ed. 2014, 25, 802–825. [Google Scholar] [CrossRef]
- Jundziłł, A.; Pokrywczyńska, M.; Adamowicz, J.; Kowalczyk, T.; Nowacki, M.; Bodnar, M.; Marszałek, A.; Frontczak-Baniewicz, M.; Mikułowski, G.; Kloskowski, T.; et al. Vascularization Potential of Electrospun Poly(l-lactide-co-caprolactone) Scaffold: The Impact for Tissue Engineering. Med. Sci. Monit. 2017, 23, 1540–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Chen, J.; Yang, B.; Li, L.; Luo, X.; Zhang, X.; Feng, L.; Jiang, Z.; Yu, M.; Guo, W.; et al. Combination of Aligned PLGA/Gelatin Electrospun Sheets, Native Dental Pulp Extracellular Matrix and Treated Dentin Matrix as Substrates for Tooth Root Regeneration. Biomaterials 2015, 52, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, T. Functional Micro- and Nanofibers Obtained by Nonwoven Post-Modification. Polymers 2020, 12, 1087. [Google Scholar] [CrossRef] [PubMed]
- Kloskowski, T.; Jundziłł, A.; Kowalczyk, T.; Nowacki, M.; Bodnar, M.; Marszałek, A.; Pokrywczyńska, M.; Frontczak-Baniewicz, M.; Kowalewski, T.A.; Chłosta, P.; et al. Ureter Regeneration-the Proper Scaffold Has to Be Defined. PLoS ONE 2014, 9, e106023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Lin, M.; Xie, Q.; Sun, H.; Huang, Y.; Zhang, D.; Yu, Z.; Bi, X.; Chen, J.; Wang, J.; et al. Electrospun Silk Fibroin/Poly(lactide-co-ε-caprolactone) Nanofibrous Scaffolds for Bone Regeneration. Int. J. Nanomed. 2016, 11, 1483–1500. [Google Scholar] [CrossRef] [Green Version]
- Sanaei-rad, P.; Jamshidi, D.; Adel, M.; Seyedjafari, E. Electrospun Poly(l-lactide) Nanofibers Coated with Mineral Trioxide Aggregate Enhance Odontogenic Differentiation of Dental Pulp Stem Cells. Polym. Adv. Technol. 2021, 32, 402–410. [Google Scholar] [CrossRef]
- Amghar-Maach, S.; Gay-Escoda, C.; Sánchez-Garcés, M.Á. Regeneration of Periodontal Bone Defects with Dental Pulp Stem Cells Grafting: Systematic Review. J. Clin. Exp. Dent. 2019, 11, e373–e381. [Google Scholar] [CrossRef]
- Xia, Y.; Guo, Y.; Yang, Z.; Chen, H.; Ren, K.; Weir, M.D.; Chow, L.C.; Reynolds, M.A.; Zhang, F.; Gu, N.; et al. Iron Oxide Nanoparticle-Calcium Phosphate Cement Enhanced the Osteogenic Activities of Stem Cells through WNT/β-Catenin Signaling. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109955. [Google Scholar] [CrossRef]
- Noda, S.; Kawashima, N.; Yamamoto, M.; Hashimoto, K.; Nara, K.; Sekiya, I.; Okiji, T. Effect of Cell Culture Density on Dental Pulp-Derived Mesenchymal Stem Cells with Reference to Osteogenic Differentiation. Sci. Rep. 2019, 9, 5430. [Google Scholar] [CrossRef]
- Labedz-Maslowska, A.; Bryniarska, N.; Kubiak, A.; Kaczmarzyk, T.; Sekula-Stryjewska, M.; Noga, S.; Boruczkowski, D.; Madeja, Z.; Zuba-Surma, E. Multilineage Differentiation Potential of Human Dental Pulp Stem Cells-Impact of 3D and Hypoxic Environment on Osteogenesis In Vitro. Int. J. Mol. Sci. 2020, 21, 6172. [Google Scholar] [CrossRef]
- Pisciotta, A.; Riccio, M.; Carnevale, G.; Beretti, F.; Gibellini, L.; Maraldi, T.; Cavallini, G.M.; Ferrari, A.; Bruzzesi, G.; De Pol, A. Human Serum Promotes Osteogenic Differentiation of Human Dental Pulp Stem Cells In Vitro and In Vivo. PLoS ONE 2012, 7, e50542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazgir, M.; Zhang, W.; Zhang, X.; Elies, J.; Saeinasab, M.; Coates, P.; Youseffi, M.; Sefat, F. Degradation and Characterisation of Electrospun Polycaprolactone (PCL) and Poly(lactic-co-glycolic acid) (PLGA) Scaffolds for Vascular Tissue Engineering. Materials 2021, 14, 4773. [Google Scholar] [CrossRef]
- Pogorielov, M.; Hapchenko, A.; Deineka, V.; Vodsed’álková, K.; Berezkinová, L.; Vysloužilová, L.; Klápšt’ová, A.; Erben, J. NanoMatrix3D® Technology in Development of Nanofibrouse Scaffolds: Biomedical Evaluation. In Proceedings of the 2017 IEEE 7th International Conference Nanomaterials: Application Properties (NAP), Zatoka, Ukraine, 10–15 September 2017; pp. 04NB01-1–04NB01-4. [Google Scholar]
- Bandyopadhyay, B.; Shah, V.; Soram, M.; Viswanathan, C.; Ghosh, D. In Vitro and In Vivo Evaluation of (l)-Lactide/ε-Caprolactone Copolymer Scaffold to Support Myoblast Growth and Differentiation. Biotechnol. Prog. 2013, 29, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Cao, G.; Li, Y.; Zhang, Z.; Nör, J.E.; Clarkson, B.H.; Liu, J. Signals in Stem Cell Differentiation on Fluorapatite-Modified Scaffolds. J. Dent. Res. 2018, 97, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Louvrier, A.; Euvrard, E.; Nicod, L.; Rolin, G.; Gindraux, F.; Pazart, L.; Houdayer, C.; Risold, P.Y.; Meyer, F.; Meyer, C. Odontoblastic Differentiation of Dental Pulp Stem Cells from Healthy and Carious Teeth on an Original PCL-Based 3D Scaffold. Int. Endod. J. 2018, 51 (Suppl. 4), e252–e263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Chen, M.; Wei, X.; Hao, Y.; Wang, J. Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration. Materials 2017, 10, 831. [Google Scholar] [CrossRef] [Green Version]
Target Gene | NCBI Reference Sequence | Sequence (5′–3′) | Amplicon Length (bp) |
---|---|---|---|
Osteopontin (OPN) | NM_001251830.1 | F:5′-ATCACCTGTGCCATACCA-3′ R:5′-CATCTTCATCATCCATATCATCCA-3′ | 1823 |
Osteocalcin (OCN) | NM_199173.4 | F:5′-GCAGGTGCGAAGCCCAGCGGTGCAGAG-3′ R:5′-GGGCTGGGAGGTCAGGGCAAGGGCAAG-3′ | 562 |
Bone sialoprotein (BSP) | NM_004967 | F:5′-TCACTGGAGCCAATGCAGAA-3′ R:5′-TGGAGAGGTTGTTGTCTTCGAG-3′ | 1573 |
Dentin sialophosphoprotein (DSPP) | NM_014208.3 | F:5′-GGCAGTGCATCAAAAGGAGC-3′ R:5′-TGCTGTCACTGTCACTGCTG-3′ | 4331 |
β-actin (β-actin) | NM_001101.3 | F:5′-AGGGCAGTGATCTCCTTCTGCATCCT-3′ R:5′-CCACACTGTGCCCATCTACGAGGGGT-3′ | 1852 |
Number Average Molecular Weight (Mn) | Weight Average Molecular Weight (Mw) | Dispersity (Ð) | |
---|---|---|---|
PLCL before electrospinning | 35 kDa | 134 kDa | 3.9 |
PLCL after electrospinning | 34 kDa | 130 kDa | 3.8 |
Water Contact Angle | Mass Loss | Porosity | Mean Average Fiber Diameter | p | |
---|---|---|---|---|---|
Unmodified PLCL fibers | 116–133° | - | 65% | 3.7124 ± 1.3141 μm | 0.0003 |
Modified PLCL fibers | 0° | 35% | 73% | 3.1798 ± 0.7510 μm |
Cultured Condition | Immunoreactivity (Percentage of Positive Cells, Mean +SD) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Number of Donors | CD105 | CD90 | CD44 | Stro-1 | |||||
n [%] | p | n [%] | p | n [%] | p | n [%] | p | ||
hDPSCs grown in flasks | 4 | 86.7 + 13.591 | 57.1 + 20.048 | 93.7 + 5.818 | 16.2 + 10.232 | ||||
NS | NS | NS | NS | ||||||
hDPSCs grown on PLCL | 4 | 91.2 ± 5.052 | 59.2 ± 24.301 | 94.6 ± 5.575 | 10.4 ± 5.187 |
Cultured Condition | Immunoreactivity (Percentage of Positive Cells, Mean ±SD) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Number of Donors | BSP | OCN | OPN | DSPP | |||||
n [%] | p | n [%] | p | n [%] | p | n [%] | p | ||
hDPSCs on PLCL before differentiation | 4 | 13.9 ± 4.581 | <0.0003 | 23.3 ± 5.271 | <0.0005 | 22.8 ± 9.75 | <0.0001 | 11.1 ± 4.581 | <0.0001 |
hDPSCs on PLCL after differentiation | 4 | 45.6 ± 14.99 | 61.1 ± 19.689 | 62.2 ± 17.498 | 46.7 ± 8.165 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bar, J.K.; Kowalczyk, T.; Grelewski, P.G.; Stamnitz, S.; Paprocka, M.; Lis, J.; Lis-Nawara, A.; An, S.; Klimczak, A. Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly(l-lactide-co-caprolactone) Scaffold. Materials 2022, 15, 1900. https://doi.org/10.3390/ma15051900
Bar JK, Kowalczyk T, Grelewski PG, Stamnitz S, Paprocka M, Lis J, Lis-Nawara A, An S, Klimczak A. Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly(l-lactide-co-caprolactone) Scaffold. Materials. 2022; 15(5):1900. https://doi.org/10.3390/ma15051900
Chicago/Turabian StyleBar, Julia K., Tomasz Kowalczyk, Piotr G. Grelewski, Sandra Stamnitz, Maria Paprocka, Joanna Lis, Anna Lis-Nawara, Seongpil An, and Aleksandra Klimczak. 2022. "Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly(l-lactide-co-caprolactone) Scaffold" Materials 15, no. 5: 1900. https://doi.org/10.3390/ma15051900
APA StyleBar, J. K., Kowalczyk, T., Grelewski, P. G., Stamnitz, S., Paprocka, M., Lis, J., Lis-Nawara, A., An, S., & Klimczak, A. (2022). Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly(l-lactide-co-caprolactone) Scaffold. Materials, 15(5), 1900. https://doi.org/10.3390/ma15051900