Coupling Removal of P-Chloronitrobenzene and Its Reduction Products by Nano Iron Doped with Ni and FeOOH (nFe/Ni-FeOOH)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Materials
2.3. Batch Experiments
2.4. Material Characterizations
3. Results and Discussion
3.1. TEM Analyses
3.2. XRD Analyses
3.3. Effects of pH and Temperature on Coupling Removal of p-CNB, p-CAN and AN by n-Fe/Ni-FeOOH
3.3.1. The Effect of pH Value on Removal Efficiency
3.3.2. The Effect of Temperature on Removal Efficiency
3.4. Process and Mechanism of Coupling Removal of p-CNB, p-CAN and AN by n-Fe/Ni-FeOOH
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, L.; Shen, J.; Chen, Z.; Guan, X. Role of Fe/pumice composition and structure in promoting ozonation reactions. Appl. Catal. B Environ. 2016, 80, 707–714X. [Google Scholar] [CrossRef]
- Xu, X.H.; Wo, J.J.; Zhang, J.H. Catalytic dechlorination of p-NCB in water by nanoscale Ni/Fe. Desalination 2009, 242, 346–354. [Google Scholar] [CrossRef]
- Peng, X.; Pan, X.; Wang, D.; Li, P.; Huang, G.; Qiu, K.; Shan, X. Accelerated removal of high concentration p-chloronitrobenzene using bioelectrocatalysis process and its microbial communities analysis. Bioresour. Technol. 2018, 249, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.R.; Liu, Y.Y.; Sepai, O.; Yan, H.F.; Sabbioni, G. Internal exposure, health effects, and cancer risk of humans exposed to chloronitrobenzene. Environ. Sci. Technol. 2006, 40, 387–394. [Google Scholar] [CrossRef]
- Zhu, L.; Lin, H.Z.; Qi, Q.J.; Xu, X.Y.; Qi, H.Y. Effect of H2 on reductive transformation of p-ClNB in a combined ZVI-anaerobic sludge system. Water Res. 2012, 46, 6291–6299. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Y.; Liu, L.; Lan, Y. Rapid removal of p-chloronitrobenzene from aqueous solution by a combination of ozone with zero-valent zinc. Sep. Purif. Technol. 2015, 151, 318–323. [Google Scholar] [CrossRef]
- Sui, Q.; Wang, B.; Zhao, W.; Huang, J.; Yu, G.; Deng, S. Identification of priority pharmaceuticals in the water environment of China. Chemosphere 2012, 89, 280–286. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Gong, W.; Dou, Y.; Wang, S.; Wang, W. Structural characterizations of zinc-copper silicate polymer (ZCSP) and its mechanisms of ozonation for removal of p-chloronitrobenzene in aqueous solution. Sep. Purif. Technol. 2017, 172, 251–257. [Google Scholar] [CrossRef]
- Ye, M.; Chen, Z.; Wang, W.; Shen, J.; Ma, J. Hydrothermal synthesis of TiO2 hollow microspheres for the photo-catalytic degradation of 4-chloronitrobenzene. Hazard Mater. 2010, 184, 612–619. [Google Scholar] [CrossRef]
- Li, X.Y.; Huang, Y.; Li, C. Degradation of p-CNB by Fenton like process using α-FeOOH. Chem. Eng. J. 2015, 260, 28–36. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, J.; Kong, J.; Li, T.; Chen, Z. Synthesized heterogeneous Fenton-like goethite (FeOOH) catalyst for degradation of p-chloronitrobenzene. Water Sci. Technol. 2013, 68, 1614–1621. [Google Scholar]
- Wang, Q.; Zhang, B.; Wang, M.H.; Wu, J.; Li, Y.Y.; Gao, Y.X.; Li, W.C.; Jin, Y. Synthetic lepidocrocite for phosphorous removal from reclaimed water: Optimization using convex optimization method and successive adsorption in fixed bed column. Environ. Technol. 2016, 37, 2750–2759. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Wang, M.; Hu, Y.; Lv, S.; Li, C. Synthesis, characterization, and debromination reactivity of cellulose-stabilized Pd/Fe nanoparticles for 2, 2’, 4, 4’-tretrabromodiphenyl ether. PLoS ONE 2017, 12, e0174589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anang, E.; Liu, H.; Fan, X. Compositional evolution of nanoscale zero valent iron and 2,4-dichlorophenol during dechlorination by attapulgite supported Fe/Ni nanoparticles. J. Hazard Mater. 2021, 412, 125246. [Google Scholar] [CrossRef]
- Mei, H.; Wang, Q.; Liu, G. Nanoscale Zero-Valent Iron Supported on Carbon Nitride as a Peroxymonosulfate Activator for the Efficient Degradation of Paraxylene. Catal Lett. 2021, 151, 1–11. [Google Scholar] [CrossRef]
- Shi, L.N.; Zhou, Y.; Chen, Z.L.; Megharaj, M.; Naidu, R. Simultaneous adsorption and degradation of Zn2+ and Cu2+ from wastewaters using nanoscale zero-valent iron impregnated with clays. Environ. Sci. Pollut. R. 2013, 20, 3639–3648. [Google Scholar] [CrossRef]
- Gisi, S.D.; Minettoa, D.; Lofranoab, G.; Libralatoac, G.; Barbara, C.; Todaroa, F.; Notarnicolaa, M. 2017 Nano-scale zero valent iron (nZVI) treatment of marine sediments slightly polluted by heavy metals. Chem. Eng. Trans. 2017, 60, 139–144. [Google Scholar]
- Ruan, X.; Liu, H.; Wang, J.W.; Zhao, D.Y.; Fan, X.Y. A new insight into the main mechanism of 2,4-dichlorophenol dechlorination by Fe/Ni nanoparticles. Sci. Total Environ. 2019, 697, 133996. [Google Scholar] [CrossRef]
- Zhang, H.C.; Huang, C.H. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere 2007, 66, 1502–1512. [Google Scholar] [CrossRef]
- Liu, A.R.; Liu, J. Transformation and composition evolution of nanoscale zero valent iron (n-Fe) synthesized by borohydride reduction in static water. Chemosphere 2015, 119, 1068–1074. [Google Scholar] [CrossRef]
- Fu, F.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard Mater. 2014, 267, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.C.; Braun, J.; Bruns, J.; Černík, M.; Rissing, P.; Rickerby, D.; Nowack, B. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ. Sci. Pollut. R. 2012, 19, 550–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosco, T.; Papini, M.P.; Viggi, C.C.; Sethi, R. Nanoscale zerovalent iron particles for groundwater remediation: A review. J. Clean. Prod. 2014, 77, 10–21. [Google Scholar] [CrossRef]
- Wang, J.; Tang, J. Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. J. Mol. Liq. 2021, 332, 115755. [Google Scholar] [CrossRef]
- Hedenstedt, K.; Simic, N.; Wildlock, M.; Ahlberg, E. Kinetic study of the hydrogen evolution reaction in slightly alkaline electrolyte on mild steel, goethite and lepidocrocite. Electroanal. Chem. 2016, 783, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.; Liu, J.; Yue, D.; Zeng, X.; Nie, Y. Dechlorination of hexachlorobenzene using lead–iron bimetallic particles. Chemosphere 2013, 90, 2403–2407. [Google Scholar] [CrossRef]
- Jia, H.; Wang, C. Dechlorination of chlorinated phenols by subnanoscale Pd0/Fe0 intercalated in smectite: Pathway, reactivity, and selectivity. J. Hazard. Mater. 2015, 300, 779–787. [Google Scholar] [CrossRef]
- Shih, Y.H.; Chen, M.Y.; Su, Y.F. Pentachlorophenol reduction by Pd/Fe bimetallic nanoparticles: Effects of copper, nickel, and ferric cations. Appl. Catal. B-Environ. 2011, 105, 24–29. [Google Scholar] [CrossRef]
- Choi, H.; Abed, S.R.A.; Agarwal, S.; Dionysiou, D.D. Synthesis of reactivenano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chem. Mater. 2008, 11, 3649–3655. [Google Scholar] [CrossRef]
- Bezza, F.A.; Chirwa, E. Removal of phosphate from contaminated water using activated carbon supported nanoscale zero-valent iron (n-Fe) particles. Chem. Eng. Trans. 2021, 84, 55–60. [Google Scholar]
- Kim, Y.H.; Carraway, E.R. Dechlorination of Pentachlorophenol by Zero Valent Iron and Modified Zero Valent Irons. Environ. Sci. Technol. 2000, 34, 2014–2017. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, F.; Yue, P.L.; Chen, G. Catalytic dechlorination of chlorophenols in water by palladium/iron. Water Res. 2001, 35, 1887–1890. [Google Scholar] [CrossRef] [Green Version]
- Hua, T.; Li, J.; Zhen, M.; Li, L.; Hao, Z. Effect of ph on ddt degradation in aqueous solution using bimetallic ni/fe nanoparticles. Sep. Purif. Technol. 2009, 66, 84–89. [Google Scholar]
- Lai, B.; Zhang, Y.; Chen, Z.; Yang, P.; Zhou, Y.; Wang, J. Removal of p-nitrophenol (pnp) in aqueous solution by the micron-scale iron-copper (fe/cu) bimetallic particles. Appl. Catal. B Environ. 2014, 144, 816–830. [Google Scholar] [CrossRef]
- Su, Y.; Adeleye, A.S.; Huang, Y.; Sun, X.; Dai, C.; Zhou, X.; Zhang, Y.; Keller, A.A. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (n-Fe) and au doped n-Fe particles. Water Res. 2014, 63, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.J.; Zhang, Y.X.; Jing, Q. Study on modified F-N-Fe/Ni bimetal nanoparticles for reduction of 2,4-dichlorophenol in water. Appl. Chem. Ind. 2019, 48, 6. [Google Scholar]
- Sleimana, N.; Deluchata, V.; Wazne, M.; Courtin, A.; Saad, Z.; Kazpard, V.; Baudu, M. Role of iron oxidation byproducts in the removal of phosphate from aqueous solution. RSC Adv. 2015, 6, 1627–1636. [Google Scholar] [CrossRef]
- Han, X.; Wang, Y.F.; Tang, X.K.; Ren, H.T.; Wu, S.H.; Jia, S.Y. Lepidocrocite-catalyzed mn(ii) oxygenation by air and its effect on the oxidation and mobilization of as(iii). Appl. Geochem. 2016, 72, 34–41. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, J.; Hu, S. Catalytic dechlorination of Aroclor 1242 by Ni/Fe bimetallic nanoparticles. J. Colloid Interf. Sci. 2012, 385, 160–165. [Google Scholar] [CrossRef]
- Zhu, L.; Jin, J.; Lin, H.; Gao, K.; Xu, X. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater. J. Hazard Mater. 2017, 285, 157–166. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, S.; Zou, D. Electrochemically mediated nitrate reduction on nanoconfined zerovalent iron: Properties and mechanism. Water Res. 2020, 173, 115596. [Google Scholar] [CrossRef] [PubMed]
Temperature (°C) | Solubility (mg·L−1) | Temperature (°C) | Solubility (mg·L−1) |
---|---|---|---|
0 | 14.64 | 20 | 9.08 |
5 | 13.15 | 25 | 8.28 |
10 15 | 10.24 9.86 | 30 35 | 7.56 6.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Li, Z.; Anang, E.; Liu, H.; Fan, X. Coupling Removal of P-Chloronitrobenzene and Its Reduction Products by Nano Iron Doped with Ni and FeOOH (nFe/Ni-FeOOH). Materials 2022, 15, 1928. https://doi.org/10.3390/ma15051928
Liang J, Li Z, Anang E, Liu H, Fan X. Coupling Removal of P-Chloronitrobenzene and Its Reduction Products by Nano Iron Doped with Ni and FeOOH (nFe/Ni-FeOOH). Materials. 2022; 15(5):1928. https://doi.org/10.3390/ma15051928
Chicago/Turabian StyleLiang, Jing, Zhixue Li, Emmanuella Anang, Hong Liu, and Xianyuan Fan. 2022. "Coupling Removal of P-Chloronitrobenzene and Its Reduction Products by Nano Iron Doped with Ni and FeOOH (nFe/Ni-FeOOH)" Materials 15, no. 5: 1928. https://doi.org/10.3390/ma15051928
APA StyleLiang, J., Li, Z., Anang, E., Liu, H., & Fan, X. (2022). Coupling Removal of P-Chloronitrobenzene and Its Reduction Products by Nano Iron Doped with Ni and FeOOH (nFe/Ni-FeOOH). Materials, 15(5), 1928. https://doi.org/10.3390/ma15051928