Studies on Cement Pastes Exposed to Water and Solutions of Biological Waste
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. XRD Measurements
3.2. Thermal Analysis
3.3. Compressive Strength of Cement Pastes
3.4. FT-IR Measurements
4. Results and Discussion
4.1. Phase Composition, Micro-Structure
4.2. Thermal Analysis
4.3. Changes in Compressive Strength of Cement Pastes
4.4. FT-IR Analysis
5. Conclusions
- The use of different exposure conditions for pastes made of Portland cements (OPC) with variable chemical compositions affects the quantitative and qualitative composition of the tested samples.
- The following crystalline phases were determined in the phase composition of cement pastes kept in water for a period of 10 months: C3A·3CaSO4·32H2O, Ca(OH)2, CaCO3, C2S, C3A, and CaSO4·2H2O.
- The cement pastes exposed to biological corrosion conditions, apart from the above-mentioned phases, showed the presence of thaumasite, C3S·CO2·SO3·15H2O, as the corrosion product.
- In samples with thaumasite, the disintegration of the CSH phase and an increase in the content of calcium carbonate, CaCO3, were observed.
- Bacteria present in pig slurry, and the metabolic processes resulting from their anaerobic respiration, increase the content of calcium carbonate, CaCO3, in the samples.
- A decrease in mechanical strength of between 10% and 16% was observed in the samples subjected to pig slurry.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008, 38, 115–127. [Google Scholar] [CrossRef]
- Voegela, C.; Giroudona, M.; Bertrona, A.; Patapya, C.; Matthieuc, P.L.; Verdiera, T.; Erable, B. Cementitious materials in biogas systems: Biodeterioration mechanisms and kinetics in CEM I and CAC based materials. Cem. Concr. Res. 2019, 124, 105815. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Liu, Y.; Xu, H.; Gencel, O.; Peng, Y.; Yuan, Q.; Gao, J. The Roles of Cenosphere in Ultra-Lightweight Foamed Geopolymer Concrete (UFGC). Ceram. Int. 2022, in press. [Google Scholar] [CrossRef]
- Sujak, A.; Pyzalski, M.; Durczak, K.; Brylewski, T.; Pilarski, K. Physicochemical properties of selected cement slurries subjected to corrosion in the presence of animal waste. Ogólnopol. Jubil. Konf. Nauk. 2021, 58. [Google Scholar]
- Grengg, C.; Mittermayr, F.; Baldermann, A.; Böttcher, M.E.; Leis, A.; Koraimann, G.; Grunert, P.; Dietzel, M. Microbiologically induced concrete corrosion: A case study from a combined sewer network. Cem. Concr. Res. 2015, 77, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Hewlet, P.C.; Liska, M. Lea’s Chemistry of Cement and Concrete, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2019. [Google Scholar]
- Zhi-hai, H.; Hao-nan, Z.; Jin-yan, S.; Jing, L.; Qiang, Y.; Cong, M. Multi-scale characteristics of magnesium potassium phosphate cement modified by metakaolin. Ceram. Int. 2022, in press. [Google Scholar]
- Kurdowski, W. Chemia Cementu; Wydawnictwo Naukowe PWN: Warszava, Poland, 1991. [Google Scholar]
- Li, C.Z.; Song, X.B.; Jiang, L. A time-dependent chloride diffusion model for predicting initial corrosion time of reinforced concrete with slag addition. Cem. Concr. Res. 2021, 145, 106455. [Google Scholar] [CrossRef]
- Kurdowski, W. Cement and Concrete Chemistry; Springer: Berlin, Germany, 2014. [Google Scholar]
- Durczak, K.; Pyzalski, M.; Pilarski, K.; Brylewski, T.; Sujak, A. The Effect of Liquid Slurry-Enhanced Corrosion on the Phase Composition of Selected Portland Cement Pastes. Materials 2021, 14, 1707. [Google Scholar] [CrossRef]
- Pyzalski, M.; Dąbek, J.; Adamczyk, A.; Brylewski, T. Physicochemical Study of the Self-Disintegration of Calcium Orthosilicate (β→γ) in the Presence of the C12A7 Aluminate Phase. Materials 2021, 14, 6459. [Google Scholar] [CrossRef]
- PN-EN 196-1:2016-07; Cement—Part 1. Cement Test Methods—Part 1: Determination of Strength. Polish Committee for Standardization: Warsaw, Poland, 2018.
- Brentano Capeletti, L.; Zimnoch, J.H. Fourier Transform Infrared and Raman Characterization of Silica-Based Materials. 2016. Available online: https://www.intechopen.com/chapters/52212 (accessed on 7 December 2021).
- Tokoro, C.; Suzuki, S.; Haraguchi, D.; Izawa, S. Silicate Removal in Aluminum Hydroxide Co-Precipitation Process. Materials 2014, 7, 1084–1096. [Google Scholar] [CrossRef]
- Ghorab, H.Y.; Mohamed, M.K.; Mohamed, S.K. Routes of thaumasite formation and ways for its prevention. Cement Wapno Beton 2020, 25, 104–114. [Google Scholar] [CrossRef]
- Lin, R.-S.; Wang, X.-Y.; Lee, H.-S.; Cho, H.-K. Hydration and Microstructure of Cement Pastes with Calcined Hwangtoh Clay. Materials 2019, 12, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tararushkin, E.V.; Shchelokova, T.N.; Kudryavtseva, V.D. A study of strength fluctuations of Portland cement by FTIR Spectroscopy. IOP Conf. Ser. Mater. Sci. Eng. 2020, 919, 022017. [Google Scholar] [CrossRef]
- Khoshnazar, R.; Beaudoin, J.J.; Raki, L.; Alizadeh, R. Characteristics and Engineering Performance of C-S-H/Aminobenzoic Acid Composite Systems. J. Adv. Concr. Technol. 2015, 13, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Andrejkovičová, S.; Madejová, J.; Czímerowá, A.; Galko, I.; Dohrmann, R.; Komade, P. Mineralogy and chemistry of Fe-rich bentonite from the Lieskovec deposit (Central Slovakia). Geol. Carpath. 2006, 57, 371–378. [Google Scholar]
- Chen, H.; Wang, X.; Xue, F.; Huang, Y.; Zhou, K.; Zhang, D. 3D printing of SiC ceramic: Direct ink writing with a solution of preceramic polymers. J. Eur. Ceram. Soc. 2018, 38, 5294–5300. [Google Scholar] [CrossRef]
- Yang, R.; Yu, L.; Jin, X.; Zhou, M.; Carpenter, B.K. Reaction of vinyl radical with oxygen: A matrix isolation infrared spectroscopic and theoretical study. J. Chem. Phys. 2005, 122, 014511. [Google Scholar] [CrossRef]
- San Andrés, E.; del Prado, A.; Mártil, I.; González-Díaz, G. Bonding configuration and density of defects of SiOxHy thin films deposited by the electron cyclotron resonance plasma method. J. Appl. Phys. 2003, 94, 7462. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Blanco, J.D.; Shaw, S.; Benning, L.G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 2011, 3, 265–271. [Google Scholar] [CrossRef]
- Vaičiukynienė, D.; Skipkiūnas, G.; Daukšys, M.; Sasnauskas, V. Cement hydration with zeolite-based additive. Chemija 2013, 24, 271–278. [Google Scholar]
- Horgnies, M.; Chen, J.J.; Bouillon, C. Overview about the use of Fourier Transform Infrared spectroscopy to study cementitious Materials. In WIT Transactions on Engineering Science; WIT Press: Southhempton, UK, 2013; Volume 77, pp. 251–262. ISSN 1743-3533. (on-line). [Google Scholar] [CrossRef] [Green Version]
- Ghorab, H.Y.; Mabrouk, M.R.; Herfort, D.; Osman, Y.A. Infrared investigation on systems related to the thaumasite formation at room temperature and 7 °C. Cem. Wapno Beton 2014, 4, 252–261. [Google Scholar]
- Mohammed, A.; Rafiqa, S.; Mahmood, W.; Noaman, R.; AL-Darkazali, H.; Ghafor, K.; Qadir, W. Microstructure characterizations, thermal properties, yield stress, plastic viscosity and compression strength of cement paste modified with nanosilica. J. Mater. Res. Technol. 2020, 9, 10941–10956. [Google Scholar] [CrossRef]
- González-Gómez, M.A.; Belderbos, S.; Yañez-Vilar, S.; Piñeiro, Y.; Cleeren, F.; Bormans, G.; Deroose, C.M.; Gsell, W.; Himmelreich, U.; Rivas, J. Development of Superparamagnetic Nanoparticles Coated with Polyacrylic Acid and Aluminum Hydroxide as an Efficient Contrast Agent for Multimodal Imaging. Nanomaterials 2019, 9, 1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Oxides/ Ions [%] | Chełm CEM I 42.5N | Rudniki CEM I 42.5R | Górażdże CEM I 42.5R | Ożarów CEM I 42.5N | Odra CEM I 42.5R | Warta CEM I 42.5R | Małogoszcz CEM I 42.5R |
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
SiO2 | 21.70 | 20.81 | 21.66 | 21.56 | 19.36 | 22.47 | 24.27 |
Al2O3 | 3.30 | 4.69 | 5.14 | 4.76 | 5.75 | 6.05 | 4.29 |
Fe2O3 | 4.56 | 3.77 | 2.77 | 3.14 | 2.83 | 2.72 | 2.80 |
CaO | 65.52 | 65.79 | 65.36 | 64.94 | 66.99 | 63.67 | 64.01 |
MgO | 1.12 | 1.33 | 1.46 | 1.92 | 1.68 | 1.91 | 1.10 |
SO3 | 3.14 | 2.65 | 2.52 | 2.63 | 2.20 | 2.12 | 2.30 |
K2O | 0.41 | 0.77 | 0.86 | 0.71 | 1.05 | 0.80 | 1.10 |
Na2O | 0.20 | 0.14 | 0.15 | 0.30 | 0.11 | 0.20 | 0.10 |
Cl− | 0.05 | 0.05 | 0.08 | 0.04 | 0.03 | 0.06 | 0.03 |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Parameter | Value | Unit | Research Method | Standard |
---|---|---|---|---|
As | <0.001 | mg/L | Flame atomic absorption spectrometry (FAAS) | PN-ISO 8288:2002, method A PN-EN 13346:2002 p. 8.3 |
NO3− | 1.60 ± 0.03 | mg/L | Spectrophotometry; concentration of nitrite nitrogen calculated | PN-EN 26777:1999 |
CN− | <0.005 | mg/L | Determination of free, bound, and total cyanides by titration and argentometry | PN-82, C04603/02 |
F− | 0.41 ± 0.01 | mg/L | Spectrophotometry | PB-8 from 18.06.2020 based on HACH 8029 |
Mg | 14.00 ± 0.11 | mg/L | Titration method | PN-ISO 6059:1999 |
Cu | <0.003 | mg/L | Flame atomic absorption spectrometry (FAAS) | PN-ISO 8288:2002, method A PN-EN 13346:2002 p. 8.3 |
Pb | <0.001 | mg/L | Flame atomic absorption spectrometry (FAAS) | PN-ISO 8288:2002, method A PN-EN 13346:2002 p. 8.3 |
Hg | <0.0001 | mg/L | Flame atomic absorption spectrometry (FAAS) | PN-ISO 8288:2002, method A PN-EN 13346:2002 p. 8.3 |
SO4²− | 175.0 ± 12.1 | mg/L | Weight method | PN-ISO 9280:2002 |
Total hardnessCaCO3 and MgCO3 | 377.0 ± 18.6 | mg/L | The total content of calcium and magnesium (general hardness); titration method | PN-ISO 6059:1999 |
Ca | 87.0 ± 1.9 | mg/L | Titration method | PN-ISO 6058:1999 |
Ife | 0.20 ± 0.01 | mg/L | Spectrophotometry | PN-ISO 6332:2001 |
Total trihalomethanes THM | 3.0 ± 0.5 | µg/L | Spectrophotometry | PN-82/C-04576.08 |
Cl− | 0.100 ± 0.006 | mg/L | Titration method | PN-ISO 9297:1994 |
Parameter | Value | Unit | Research Method | Standard |
---|---|---|---|---|
N—Kjeldahl total | 1240.0 ± 60.4 | mg/L | Titration method | PN-ISO 11261:2002 |
NH4+ | 1050.0 ± 51.1 | mg/L | Titration method; concentration of ammonium and ammonia calculated | PN-ISO 5664:2002 |
N—Total nitrogen | 1350.0 ± 63.5 | mg/L | Calculated | - |
NO2− | 0.032 ± 0.003 | mg/L | Spectrophotometry; concentration of nitrite nitrogen calculated | PN-EN 26777:1999 |
NO3− | 0.31 ± 0.05 | mg/L | Spectrophotometry; nitrate nitrogen concentration calculated | PN-82/C-04576.08 |
Cr | 0.40 (-) * | mg/L | Spectrophotometry | PN-77/C-04604-08 |
Cd | 0.05 ± 0.01 | mg/L | Flame atomic absorption spectrometry (FAAS) | PN-ISO 8288:2002 method A PN-EN 13346:2002 p. 8.3 |
Ni | 0.09 ± 0.01 | mg/L | Flame atomic absorption spectrometry (FAAS) | PN-ISO 8288:2002 method A PN-EN 13346:2002 p. 8.3 |
Pb | <0.5 | mg/L | Flame atomic absorption spectrometry (FAAS) | PN-ISO 8288:2002 method A PN-EN 13346:2002 p. 8.3 |
Hg | <0.003 | mg/L | Flame atomic absorption spectrometry (FAAS) | PN-ISO 8288:2002 method A PN-EN 13346:2002 p. 8.3 |
Ca | 68 (-) * | mg/L | Titration method | PN-ISO 6058:1999 |
Mg | 4.37 ± 0.87 | mg/L | Calculated | PN-C-04554-4:1999 app. A |
P—Total phosphorus | 352 (-) | mg/L | Spectrophotometry | PN-EN ISO 6878:2006 pkt.8 +Ap1 2010 +Ap2 2010 |
K | 684.0 ± 15.4 | mg/L | Flame atomic absorption spectrometry (FAAS) | PN-ISO 9964-2:1994; PN-EN 13346:2002 p. 8.3 |
Dry mass | 1.31 ± 0.06 | mg/L | Weight method | PN-EN 12880:2004 |
Sample | Temperature Range [°C] | |||
---|---|---|---|---|
Dehydration | Dehydroxylation | Decarbonatization | ||
30–360 | 430–580 | 580–695 | 695–1000 | |
1_1 | 12.64 | 4.40 | 0.82 | 1.96 |
2_1 | 13.41 | 4.21 | 0.76 | 0.94 |
3_1 | 12.64 | 4.24 | 0.83 | 2.23 |
4_1 | 12.90 | 4.61 | 0.71 | 1.76 |
5_1 | 11.51 | 3.36 | 0.75 | 2.30 |
6_1 | 13.27 | 4.59 | 0.75 | 1.83 |
7_1 | 12.44 | 3.56 | 0.93 | 2.50 |
1_3 | 13.20 | 4.41 | 0.88 | 2.30 |
2_3 | 13.96 | 4.18 | 0.83 | 1.46 |
3_3 | 14.09 | 4.06 | 0.94 | 2.75 |
4_3 | 12.60 | 4.49 | 0.93 | 2.49 |
5_3 | 11.63 | 3.07 | 0.99 | 3.51 |
6_3 | 13.71 | 4.14 | 1.04 | 2.94 |
7_3 | 13.47 | 3.42 | 1.38 | 2.80 |
Sample | Xca(OH)2 | XcaCO3 |
---|---|---|
% (m/m) | % (m/m) | |
1_1 | 18.13 | 6.31 |
2_1 | 17.35 | 3.86 |
3_1 | 17.47 | 6.95 |
4_1 | 18.99 | 5.61 |
5_1 | 13.84 | 6.92 |
6_1 | 18.91 | 5.86 |
7_1 | 14.67 | 7.79 |
1_3 | 18.17 | 7.22 |
2_3 | 17.22 | 5.20 |
3_3 | 16.73 | 8.38 |
4_3 | 18.50 | 7.76 |
5_3 | 12.65 | 10.22 |
6_3 | 17.06 | 9.03 |
7_3 | 14.09 | 9.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sujak, A.; Pyzalski, M.; Durczak, K.; Brylewski, T.; Murzyn, P.; Pilarski, K. Studies on Cement Pastes Exposed to Water and Solutions of Biological Waste. Materials 2022, 15, 1931. https://doi.org/10.3390/ma15051931
Sujak A, Pyzalski M, Durczak K, Brylewski T, Murzyn P, Pilarski K. Studies on Cement Pastes Exposed to Water and Solutions of Biological Waste. Materials. 2022; 15(5):1931. https://doi.org/10.3390/ma15051931
Chicago/Turabian StyleSujak, Agnieszka, Michał Pyzalski, Karol Durczak, Tomasz Brylewski, Paweł Murzyn, and Krzysztof Pilarski. 2022. "Studies on Cement Pastes Exposed to Water and Solutions of Biological Waste" Materials 15, no. 5: 1931. https://doi.org/10.3390/ma15051931
APA StyleSujak, A., Pyzalski, M., Durczak, K., Brylewski, T., Murzyn, P., & Pilarski, K. (2022). Studies on Cement Pastes Exposed to Water and Solutions of Biological Waste. Materials, 15(5), 1931. https://doi.org/10.3390/ma15051931