Spatio-Temporal Statistical Characterization of Boundary Kinematic Phenomena of Triaxial Sand Specimens
Abstract
:1. Introduction
2. Soil Experiments
2.1. Triaxial Compression Test
2.2. 3D-DIC
3. Statistical Characterization of Spatio-Temporal Boundary Displacement Fields
3.1. “0D-0T” Data Ensemble
3.2. “0D-T” Data Ensemble
3.3. “1D-T” Data Ensemble
3.3.1. “1D-T” Vertical Displacement Field
3.3.2. “1D-T” Radial Displacement Field
3.4. “3D-T” Data Ensemble
3.4.1. First-Order Statistics
3.4.2. Second-Order Statistics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Desrues, J.; Viggiani, G. Strain localization in sand: An Overview of the Experimental Results Obtained in Grenoble Using Stereophotogrammetry. Int. J. Numer. Anal. Methods. Geomech. 2004, 28, 279–321. [Google Scholar] [CrossRef]
- Song, A. Deformation Analysis of Sand Specimens Using 3D Digital Image Correlation for the Calibration of an Elasto-Plastic Model; Texas A&M University: College Station, TX, USA, 2012. [Google Scholar]
- Rechenmacher, A.; Abedi, S.; Chupin, O. Evolution of Force Chains in Shear Bands in Sands. Géotechnique 2010, 60, 343–351. [Google Scholar] [CrossRef]
- Rechenmacher, A.L.; Medina-Cetina, Z. Calibration of Soil Constitutive Models with Spatially Varying Parameters. J. Geotech. Geoenviron. Eng. 2007, 133, 1567–1576. [Google Scholar] [CrossRef]
- Roscoe, K.H. The Influence of Strains in Soil Mechanics. Géotechnique 1970, 20, 129–170. [Google Scholar] [CrossRef]
- Desrues, J.; Lanier, J.; Stutz, P. Localization of the Deformation in Tests on Sand Sample. Eng. Fract. Mech. 1985, 21, 909–921. [Google Scholar] [CrossRef]
- Desrues, J.; Chambon, R.; Mokni, M.; Mazerolle, F. Void Ratio Evolution inside Shear Bands in Triaxial Sand Specimens Studied by Computed Tomography. Géotechnique 1996, 46, 529–546. [Google Scholar] [CrossRef]
- Oda, M.; Takemura, T.; Takahashi, M. Microstructure in Shear Band Observed by Microfocus X-ray Computed Tomography. Géotechnique 2004, 54, 539–542. [Google Scholar] [CrossRef]
- Oda, M.; Kazama, H. Microstructure of Shear Bands and its Relation to the Mechanisms of Dilatancy and Failure of Dense Granular Soils. Géotechnique 1998, 48, 465–481. [Google Scholar] [CrossRef]
- Alshibli, K.A.; Sture, S.; Costes, N.C.; Frank, M.L.; Lankton, M.R.; Batiste, S.N.; Swanson, R.A. Assessment of Localized Deformations in Sand Using X-ray Computed Tomography. ASTM Geotech. Test. J. 2000, 23, 274–299. [Google Scholar]
- Matsushima, T.; Katagiri, J.; Uesugi, K.; Nakano, T.; Tsuchiyama, A. Micro X-Ray CT at Spring-8 for Granular Mechanics. In Proceedings of the Soil Stress-Strain Behavior: Measurement, Modeling and Analysis, Rome, Italy, 16–17 March 2006; Springer: New York, NY, USA, 2006; pp. 225–234. [Google Scholar]
- Alshibli, K.A.; Jarrar, M.F.; Druckrey, A.M.; Al-Raoush, R.I. Influence of Particle Morphology on 3D Kinematic Behavior and Strain Localization of Sheared Sand. J. Geotech. Geoenviron. Eng. 2016, 143, 04016097. [Google Scholar] [CrossRef]
- Andò, E.; Hall, S.A.; Viggiani, G.; Desrues, J.; Bésuelle, P. Grain-scale Experimental Investigation of Localised Deformation in Sand: A Discrete Particle Tracking Approach. Acta Geotech. 2012, 7, 1–13. [Google Scholar] [CrossRef]
- Liu, J.; Iskander, M. Adaptive Cross Correlation for Imaging Displacements in Soils. J. Comput. Civ. Eng. 2004, 18, 46–57. [Google Scholar] [CrossRef]
- Hall, S.A.; Wood, D.M.; Ibraim, E.; Viggiani, G. Localised Deformation Patterning in 2D Granular Materials Revealed by Digital Image Correlation. Granul. Matter 2010, 12, 1–14. [Google Scholar] [CrossRef]
- White, D.J.; Take, W.A.; Bolton, M.D. Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry. Géotechnique 2003, 53, 619–631. [Google Scholar] [CrossRef]
- Rechenmacher, A.L. Grain-scale Processes Governing Shear Band Initiation and Evolution in Sands. J. Mech. Phys. Solids 2006, 54, 22–45. [Google Scholar] [CrossRef]
- Rechenmacher, A.L.; Abedi, S.; Chupin, O.; Orlando, A.D. Characterization of Mesoscale Instabilities in Localized Granular Shear Using Digital Image Correlation. Acta Geotech. 2011, 6, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Abedi, S.; Rechenmacher, A.L.; Orlando, A.D. Vortex Formation and Dissolution in Sheared Sands. Granul. Matter 2012, 14, 695–705. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.E. Effects of spatial variability of soil properties on slope stability. Eng. Geol. 2007, 92, 97–109. [Google Scholar] [CrossRef]
- Lloret-Cabot, M.; Fenton, G.A.; Hicks, M.A. On the estimation of scale of fluctuation in geostatistics. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2014, 8, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Viggiani, G.; Hall, S.A. Full-Field Measurements, a New Tool for Laboratory Experimental Geomechanics. In Proceedings of the Fourth Symposium on Deformation Characteristics of Geomaterials, Atlanta, GA, USA, 22–24 September 2008; Volume 1, pp. 3–26. [Google Scholar]
- Medina-Cetina, Z. Probabilistic Calibration of a Soil Model. Ph.D. Thesis, Johns Hopkins University, Baltimore, MD, USA, 2006. [Google Scholar]
- Medina-Cetina, Z.; Song, A.; Zhu, Y.; Pineda-Contreras, A.R.; Rechenmacher, A. Global and Local Deformation Effects of Dry Vacuum-Consolidated Triaxial Compression Tests on Sand Specimens: Making a Database Available for the Calibration and Development of Forward Models. Materials 2022, 15, 1528. [Google Scholar] [CrossRef]
- Correlated Solution. Available online: https://www.correlatedsolutions.com/ (accessed on 9 March 2022).
- Sutton, M.A.; Orteu, J.J.; Schreier, H. Image Correlation for Shape, Motion and Deformation Measurements—Basic Concepts, Theory and Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Oda, M.; Iwashita, K. Study on Couple Stress and Shear Band Development in Granular Media Based on Numerical Simulation Analyses. Int. J. Eng. Sci. 2000, 38, 1713–1740. [Google Scholar] [CrossRef]
- Huang, W.; Sun, D.; Sloan, S.W. Analysis of the Failure Mode and Softening Behaviour of Sands in True Triaxial Tests. Int. J. Solids. Struct. 2007, 44, 1423–1437. [Google Scholar] [CrossRef] [Green Version]
- Druckrey, A.M.; Alshibli, K.A.; Al-Raoush, R.I. Discrete Particle Translation Gradient Concept to Expose Strain Localisation in Sheared Granular Materials using 3D Experimental Kinematic Measurements. Géotechnique 2018, 68, 162–170. [Google Scholar] [CrossRef]
- Ghanem, R.G.; Spanos, P.D. Stochastic Finite Elements: A Spectral Approach; Springer: New York, NY, USA, 1991. [Google Scholar]
Test Name | Aspect Ratio | Initial Density (kg/m3) | Relative Density (%) | Friction Angle (Deg) | Peak | Sample Preparation |
---|---|---|---|---|---|---|
092903b | 2.18 | 1710.95 | 91.09 | 49.51 | 7.35 | Vibratory compaction |
093003b | 2.19 | 1696.00 | 85.96 | 47.98 | 6.78 | Vibratory compaction |
100103a | 2.21 | 1702.22 | 88.10 | 48.66 | 7.03 | Vibratory compaction |
100103b | 2.19 | 1717.13 | 93.18 | 47.96 | 6.77 | Vibratory compaction |
100103d | 2.18 | 1702.41 | 88.17 | 47.37 | 6.57 | Vibratory compaction |
100203a | 2.20 | 1715.32 | 92.57 | 48.90 | 7.12 | Vibratory compaction |
100203b | 2.17 | 1711.91 | 91.41 | 47.96 | 6.77 | Vibratory compaction |
100303b | 2.22 | 1718.70 | 93.71 | 48.56 | 6.98 | Vibratory compaction |
120604c | 2.25 | 1717.48 | 93.30 | 48.89 | 7.11 | Vibratory compaction |
120904b | 2.25 | 1720.40 | 94.28 | 48.76 | 5.86 | Vibratory compaction |
120904c | 2.25 | 1713.13 | 91.83 | 48.77 | 5.86 | Vibratory compaction |
120904d | 2.24 | 1707.89 | 90.04 | 47.68 | 5.44 | Vibratory compaction |
120904e | 2.25 | 1718.70 | 93.71 | 47.79 | 5.51 | Vibratory compaction |
101204a | 2.24 | 1708.03 | 90.09 | 48.03 | 6.89 | Dry pluviation |
120604a | 2.23 | 1721.06 | 94.50 | 49.46 | 7.33 | Dry pluviation |
120604b | 2.25 | 1715.13 | 92.50 | 48.54 | 6.98 | Dry pluviation |
121304a | 2.24 | 1721.73 | 94.73 | 49.30 | 7.27 | Dry pluviation |
First-order statistics of experimental data ensemble | ||||||
Mean | 2.22 | 1712.83 | 91.72 | 48.48 | 6.68 | - |
Standard deviation | 0.03 | 7.20 | 2.45 | 0.62 | 0.61 | - |
Statistics | Young’s Modulus (MPa) | Poisson’s Ratio | Friction Angle (Deg) | Dilation Angle (Deg) |
---|---|---|---|---|
Mean | 25.70 | 0.25 | 43.89 | 21.23 |
Standard deviation | 5.70 | 0.16 | 1.19 | 2.60 |
Minimum | 20.67 | 0.07 | 41.74 | 12.94 |
Maximum | 40.68 | 0.49 | 47.14 | 24.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Medina-Cetina, Z.; Pineda-Contreras, A.R. Spatio-Temporal Statistical Characterization of Boundary Kinematic Phenomena of Triaxial Sand Specimens. Materials 2022, 15, 2189. https://doi.org/10.3390/ma15062189
Zhu Y, Medina-Cetina Z, Pineda-Contreras AR. Spatio-Temporal Statistical Characterization of Boundary Kinematic Phenomena of Triaxial Sand Specimens. Materials. 2022; 15(6):2189. https://doi.org/10.3390/ma15062189
Chicago/Turabian StyleZhu, Yichuan, Zenon Medina-Cetina, and Alma Rosa Pineda-Contreras. 2022. "Spatio-Temporal Statistical Characterization of Boundary Kinematic Phenomena of Triaxial Sand Specimens" Materials 15, no. 6: 2189. https://doi.org/10.3390/ma15062189
APA StyleZhu, Y., Medina-Cetina, Z., & Pineda-Contreras, A. R. (2022). Spatio-Temporal Statistical Characterization of Boundary Kinematic Phenomena of Triaxial Sand Specimens. Materials, 15(6), 2189. https://doi.org/10.3390/ma15062189