Electronic States of Tris(bipyridine) Ruthenium(II) Complexes in Neat Solid Films Investigated by Electroabsorption Spectroscopy
Abstract
:1. Introduction
2. Electroabsorption
3. Materials and Methods
3.1. Materials and Experimental Details
3.2. Numerical Calculations
3.3. Quantum Chemical Calculations
4. Results and Discussion
4.1. Absorption Spectra
4.2. Electroabsorption Spectra
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Juris, A.; Balcani, V.; Barigelletti, F.; Campagna, S. Ru (II) polypyridine complexes: Photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord. Chem. Rev. 1988, 84, 85–277. [Google Scholar] [CrossRef]
- Krausz, E.; Ferguson, J. The spectroscopy of the [Ru(bpy)3]2+ system. Progr. Inorg. Chem. 1989, 37, 293–390. [Google Scholar]
- Riesen, H.; Wallace, L.; Krausz, E. Dynamical processes in the lowest-excited triplet metal-to-ligand charge transfer states of ruthenium and osmium diimine complexes in crystals. Int. Rev. Phys. Chem. 1997, 16, 291–359. [Google Scholar] [CrossRef]
- Yersin, H.; Humbs, W.; Strasser, J. Characterization of excited electronic and vibronic states of platinum metal compounds with chelate ligands by highly frequency-resolved and time-resolved spectra. Top. Curr. Chem. 1997, 191, 153–249. [Google Scholar]
- Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. Photochemistry and photophysics of coordination compounds: Ruthenium. Top. Curr. Chem. 2007, 280, 117–214. [Google Scholar]
- Thompson, D.W.; Ito, A.; Meyer, T.J. [Ru(bpy)3]2+* and other remarkable metal-to-ligand charge transfer (MLCT) excited states. Pure Appl. Chem. 2013, 85, 1257–1305. [Google Scholar] [CrossRef]
- Dongare, P.; Myron, B.D.B.; Wang, L.; Thompson, D.W.; Meyer, T.J. [Ru(bpy)3]2+* revisited. Is it localized or delocalized? How does it decay? Coord. Chem. Rev. 2017, 345, 86–107. [Google Scholar] [CrossRef]
- Chergui, M. Ultrafast photophysics of transition metal complexes. Acc. Chem. Res. 2015, 48, 801–808. [Google Scholar] [CrossRef]
- Nozaki, K.; Takamori, K.; Nakatsugawa, Y.; Ohno, T. Theoretical studies of phosphorescence spectra of tris(2,2′-bipyridine) transition metal compounds. Inorg. Chem. 2006, 45, 6161–6178. [Google Scholar] [CrossRef]
- Jaffe, H.H.; Orchin, M. Symmetry in Chemistry; Wiley: New York, NY, USA, 1965; pp. 68–69. [Google Scholar]
- Xu, S.; Smith, J.E.T.; Mathias Weber, J. The electronic spectrum of cryogenic ruthenium-tris-bipyridine dications in vacuo. J. Chem. Phys. 2016, 145, 024304. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, J.; Herren, F. A model for the interpretation of the electronic spectra of the complex ions M(bpy)32+ (M = Fe, Ru, Os) in D3 and C2 sites. Chem. Phys. 1983, 76, 45–59. [Google Scholar] [CrossRef]
- Stockett, M.H.; Brondsted Nielsen, S. Does a single CH3CN molecule attached to Ru(bipy)32+ affect its absorption spectrum? J. Chem. Phys. 2015, 142, 171102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, A.T.; Shank, C.V.; McCusker, J.K. Ultrafast electron localization dynamics following photo-induced charge transfer. Science 2000, 289, 935–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, C.W.; Trummal, A.; Uudsemaa, M.; Pahapill, J.; Rammo, M.; Petritsenko, K.; Sildoja, M.-M.; Rebane, A. Solute-solvent electronic interaction is responsible for initial charge separation in ruthenium complexes [Ru(bpy)3]2+ and [Ru(phen)3]2+. Commun. Chem. 2019, 2, 108. [Google Scholar] [CrossRef] [Green Version]
- Kober, E.M.; Sullivan, B.P.; Meyer, T.J. Solvent dependence of metal-to-ligand charge-transfer transitions. Evidence for initial electron localization in MLCT excited states of 2,2′-bipyridine complexes of ruthenium(II) and osmium(II). Inorg. Chem. 1984, 23, 2098–2104. [Google Scholar] [CrossRef]
- Janz, T.; Güterbock, M.; Müller, F.; Quick, M.; Ioffe, I.N.; Bischoff, F.A.; Kovalenko, S.A. Evaluating the solvent Stark effect from temperature-dependent solvatochromic shifts of anthracene. Chem. Phys. Chem. 2020, 21, 610–615. [Google Scholar] [CrossRef]
- Milder, S.J. Solvent effects on the long-axis intraligand transition of Ru(bpy)32+ and related compounds. Inorg. Chem. 1989, 28, 868–872. [Google Scholar] [CrossRef]
- Ferguson, J.; Krausz, E. Absorption, luminescence, and magnetic circular polarized luminescence of dicarboethoxy derivatives of Ru(bpy)32+ in rigid and fluid solutions: Evidence for environmentally induced charge localization. J. Phys. Chem. 1987, 91, 3161–3167. [Google Scholar] [CrossRef]
- Terenziani, F.; Painelli, A.; Katan, C.; Charlot, M.; Blanchard-Desce, M. Charge instability in quadrupolar chromophores: Symmetry breaking and solvatochromism. J. Am. Chem. Soc. 2006, 128, 15742–15755. [Google Scholar] [CrossRef] [Green Version]
- Liptay, W. Electrochromism and solvatochromism. Angew. Chem. Int. Ed. 1969, 8, 177–188. [Google Scholar] [CrossRef]
- Bublitz, G.; Boxer, S. Stark spectroscopy: Applications in Chemistry, Biology, and Materials Science. Ann. Rev. Phys. Chem. 1997, 48, 213–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohta, N. Electric field effects on photochemical dynamics in solid films. Bull. Chem. Soc. Jpn. 2002, 75, 1637–1655. [Google Scholar] [CrossRef]
- Liptay, W. Dipole moments and polarizabilities of molecules in excited electronic states. In Excited States; Lim, E.C., Ed.; Academic Press: New York, NY, USA, 1974; Volume 1, pp. 129–229. [Google Scholar]
- Oh, D.H.; Sano, M.; Boxer, S.G. Electroabsorption (Stark effect) spectroscopy of mono- and biruthenium charge-transfer complexes: Measurements of changes in dipole moments and other electrooptic properties. J. Am. Chem. Soc. 1991, 113, 6880–6890. [Google Scholar] [CrossRef]
- Shin, Y.K.; Brunschwig, B.S.; Creutz, C.; Sutin, N. Electroabsorption spectroscopy of charge-transfer states of transition metal complexes. 2. Metal-to-ligand and ligand-to-metal charge-transfer excited states of pentaammineruthenium complexes. J. Phys. Chem. 1996, 100, 8157–8169. [Google Scholar] [CrossRef]
- Stampor, W.; Kalinowski, J.; Marconi, G.; Di Marco, P.; Fattori, V.; Giro, G. Electroabsorption study of excited states in tris 8-hydroxyquinoline aluminum complex. Chem. Phys. Lett. 1998, 283, 373–380. [Google Scholar] [CrossRef]
- Stampor, W.; Mężyk, J.; Kalinowski, J. Electroabsorption study of metal-to-ligand charge transfer in an organic complex of iridium(III). Chem. Phys. 2004, 300, 189–195. [Google Scholar] [CrossRef]
- Stampor, W. Electroabsorption study of vacuum-evaporated films of Pt(II)octaethylporphyrin. Chem. Phys. 2004, 305, 77–84. [Google Scholar] [CrossRef]
- Oh, D.H.; Boxer, S.G. Stark effect spectra of Ru(diimine)32+ complexes. J. Am. Chem. Soc. 1989, 111, 1130–1131. [Google Scholar] [CrossRef]
- Kawamoto, K.; Tamiya, Y.; Storr, T.; Cogdell, R.J.; Kinoshita, I.; Hashimoto, H. Disentangling the 1MLCT transition of [Ru(bpy)3]2+ by Stark absorption spectroscopy. J. Photochem. Photobiol. A 2018, 353, 618–624. [Google Scholar] [CrossRef] [Green Version]
- Petelenz, P. Electro absorption spectra of degenerate charge transfer states. Chem. Phys. 1993, 171, 397–405. [Google Scholar] [CrossRef]
- Hochstrasser, R.M.; Zewail, A.H. Stark and Zeeman effects on the singlet n-π* state of s-triazine. Chem. Phys. Lett. 1971, 11, 157–158. [Google Scholar] [CrossRef]
- Talanina, I.B.; Collins, M.A.; Dubicki, L.; Krausz, E. Electrochromism for doubly degenerate states. Application to Ru(diimine)32+ complexes. Chem. Phys. Lett. 1992, 200, 318–324. [Google Scholar] [CrossRef]
- Liu, L.A.; Peteanu, L.A.; Yaron, D.J. Effects of disorder-induced symmetry breaking on the electroabsorption properties of a model dendrimer. J. Phys. Chem. B 2004, 108, 16841–16849. [Google Scholar] [CrossRef]
- Stampor, W.; Mróz, W. Electroabsorption in triphenylamine-based hole-transporting materials for organic light-emitting diodes. Chem. Phys. 2007, 331, 261–269. [Google Scholar] [CrossRef]
- Wortmann, R.; Elich, K.; Liptay, W. Excited state dipole moments and polarizabilities of centrosymmetric and dimeric molecules. III. Model calculations for 1,8-diphenyl-1,3,5,7-octatetraene. Chem. Phys. 1988, 124, 395–409. [Google Scholar] [CrossRef]
- Slawik, M.; Petelenz, P. Theoretical interpretation of the electroabsorption spectra of polyacene crystals. II. Charge-transfer states. J. Chem. Phys. 1999, 111, 7576–7582. [Google Scholar] [CrossRef]
- Ferretti, A. Theory of electroabsorption spectroscopy in poly-nuclear Ru complexes. Coord. Chem. Rev. 2003, 238–239, 127–141. [Google Scholar] [CrossRef]
- Silverman, L.N.; Kanchanawong, P.; Treynor, T.P.; Boxer, S.G. Stark spectroscopy of mixed-valence systems. Phil. Trans. R. Soc. A 2008, 366, 33–45. [Google Scholar] [CrossRef]
- Zalas, M.; Gierczyk, B.; Klein, M.; Siuzdak, K.; Pędziński, T.; Łuczak, T. Synthesis of a novel dinuclear ruthenium polypyridine dye for dye-sensitized solar cells application. Polyhedron 2014, 67, 381–387. [Google Scholar] [CrossRef]
- Zalas, M.; Gierczyk, B.; Bossi, A.; Mussini, P.R.; Klein, M.; Pankiewicz, R.; Makowska-Janusik, M.; Popenda, Ł.; Stampor, W. The influence of anchoring group position in ruthenium dye molecule on performance of dye-sensitized solar cells. Dyes Pigm. 2018, 150, 335–346. [Google Scholar] [CrossRef]
- Sebastian, L.; Weiser, G.; Bassler, H. Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption. Chem. Phys. 1981, 61, 125–135. [Google Scholar] [CrossRef]
- Ceulemans, A.; Vanquickenborne, L.G. On the charge-transfer spectra of iron(II)- and ruthenium(II)-tris(2,2′-bipyridyl) complexes. J. Am. Chem. Soc. 1981, 103, 2238–2241. [Google Scholar] [CrossRef]
- Gazda, M. (Gdańsk University of Technology, Gdańsk, Poland). Personal communication, 2021. [Google Scholar]
- Elermann, R.; Parkinson, G.M.; Bassler, H.; Thomas, J.M. Structural investigations of amorphous tetracene and pentacene by low-temperature electron diffraction. J. Phys. Chem. 1983, 87, 544–551. [Google Scholar] [CrossRef]
- Cook, M.J. Thin film formulations of substituted phthalocyanines. J. Mater. Chem. 1996, 6, 677–689. [Google Scholar] [CrossRef]
- Eccher, J.; Zajaczkowski, W.; Faria, G.C.; Bock, H.; von Seggern, H.; Pisula, W.; Bechtold, I.H. Thermal evaporation versus spin-coating: Electrical performance in columnar liquid crystal OLEDs. ACS Appl. Mater. Interfaces 2015, 7, 16374–16381. [Google Scholar] [CrossRef]
- Biner, M.; Bürgi, H.-B.; Ludí, A.; Rohr, A. Crystal and molecular structures of [Ru(bpy)3](PF6)3 and [Ru(bpy)3](PF6)2 at 105 K. J. Am. Chem. Soc. 1992, 114, 5197–5203. [Google Scholar] [CrossRef]
- Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes; Cambridge University Press: Cambridge, UK, 1986; p. 523. [Google Scholar]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Douglas, M.; Kroll, N.M. Quantum electrodynamical corrections to the fine structure of Helium*. Ann. Phys. 1974, 82, 89–155. [Google Scholar] [CrossRef]
- Hess, B.A. Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys. Rev. A 1986, 33, 3742–3748. [Google Scholar] [CrossRef] [Green Version]
- Jansen, G.; Hess, B.A. Revision of the Douglas-Kroll transformation. Phys. Rev. A 1989, 39, 6016–6017. [Google Scholar] [CrossRef] [PubMed]
- Jorge, F.E.; Canal Neto, A.; Camiletti, G.G.; Machado, S.F. Contracted Gaussian basis sets for Douglas–Kroll–Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties. J. Chem. Phys. 2009, 130, 064108. [Google Scholar] [CrossRef] [PubMed]
- Rillema, D.P.; Jones, D.S.; Woods, C.; Levy, H.A. Comparison of the crystal structures of tris heterocyclic ligand complexes of ruthenium(II). Inorg. Chem. 1992, 31, 2935–2938. [Google Scholar] [CrossRef]
- Davidson, E.R. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 1975, 17, 87–94. [Google Scholar] [CrossRef]
- Riesen, H.; Rae, A.D.; Krausz, E. Stark and Zeeman effects in the lowest excited states of [Zn(bpy)3] (ClO4)2:Ru(II). Localized triplet metal-to-ligand charge transfer transitions. J. Lum. 1994, 62, 123–137. [Google Scholar] [CrossRef]
- Kober, E.M.; Meyer, T.J. Concerning the absorption spectra of the ions M(bpy)32+ (M= Fe, Ru, Os; bpy = 2,2’-bipyridine). Inorg. Chem. 1982, 21, 3967–3977. [Google Scholar] [CrossRef]
- Pope, M.; Swenberg, C.E. Electronic Processes in Organic Crystals and Polymers, 2nd ed.; Oxford University Press: Oxford, UK, 1999; p. 59. [Google Scholar]
- Daul, C.; Baerends, E.J.; Vernooijs, P. A density functional study of the MLCT states of [Ru(bpy)3]2+ in D3 symmetry. Inorg. Chem. 1994, 33, 3538–3543. [Google Scholar] [CrossRef]
- Heully, J.-L.; Alary, F.; Boggio-Pasqua, M. Spin-orbit effects on the photophysical properties of Ru(bpy)32+. J. Chem. Phys. 2009, 131, 184308. [Google Scholar] [CrossRef]
- Lockhart, D.J.; Boxer, S.G. Magnitude and direction of the change in dipole moment associated with excitation of the primary electron donor in Rhodopseudomonas sphaeroides reaction centers. Biochemistry 1987, 26, 664–668. [Google Scholar] [CrossRef]
- Awasthi, K.; Hsu, H.Y.; Diau, E.W.-D.; Ohta, N. Enhanced charge transfer character of photoexcited states of dye sensitizer on the N719/TiO2 interface as revealed by electroabsorption spectra. J. Photochem. Photobiol. A Chem. 2014, 288, 70–75. [Google Scholar] [CrossRef] [Green Version]
Method | DFT/B3LYP | DFT/B3LYP | DFT/B3LYP | DFT/B3LYP-DKH2 | |
---|---|---|---|---|---|
Basis set | Ru | 3-21G | LANL2DZ | LANL2DZ | Jorge-TZP-DKH |
Other atoms | 6-311++G** | 6-311++G** | LANL2DZ | Jorge-TZP-DKH | |
Ru-N | 2.112 | 2.100 | 2.096 | 2.079 |
Transition | Heully et al. [63] | Stark et al. [15] | This Work | |
---|---|---|---|---|
without SOC | with SOC | without SOC | without SOC | |
19,929 | 19,487 | 21,786 | 19,595 | |
20,256 | 21,004 | 22,119 | 20,043/44 | |
21,729 | 21,842 | 23,998 | 21,155 | |
21,817 | 22,015 | 23,855 | 21,088/90 | |
23,322 | 23,411 | 24,722 | 22,747/50 | |
25,120 | 25,195 | 26,344 | 24,929 |
MATERIAL | BAND | ABS | Model 1 | Model 2 | |||||
---|---|---|---|---|---|---|---|---|---|
Posit. | Posit. | f·Δμ | (f·Δμ)av | Posit. | f·Δμ | (f·Δμ)av | f2 Δp | ||
[kK] | [kK] | [D] | [D] | [kK] | [D] | [D] | [Å3] | ||
RBY(PF6)2 | 1 | 19.65 | 19.87 | 10 (8.1) | 19.97 | 9.7 (7.5) | 40 | ||
2 | 21.84 | 22.22 | 7.1 (6.7) | 9.0 (7.9) | 22.16 | 6.5 (6.1) | 8.3 (7.0) | ||
3 | 23.50 | 23.62 | 11 (8.8) | 23.63 | 11 (8.1) | ||||
4 | 25.21 | 25.23 | 9.0 (8.2) | 25.30 | 7.4 (6.9) | ||||
5 | 28.73 | 29.14 | 8.2 (8.3) | 28.01 | 10 (10) | ||||
6 | 30.88 | 31.92 | 5.3 (4.5) | ||||||
7 | 34.47 | 34.85 | 3.3 (3.5) | ||||||
RuLp(PF6)2 | 1 | 18.85 | 19.12 | 5.5 (4.7) | 19.19 | 12 (9.8) | 70 | ||
2’ | 21.04 | 21.17 | 3.8 (3.6) | 10 (7.6) | 21.20 | 3.2 (3.1) | 7.0 (5.1) | ||
2 | 22.28 | 22.14 | 16 (7.9) | 22.12 | 11.9 (6.1) | ||||
3 | 23.19 | 23.37 | 8.0 (6.7) | 23.14 | 6.8 (5.5) | ||||
4 | 25.03 | 24.81 | 13 (12) | 24.60 | 6.1 (5.6) | ||||
5 | 27.11 | 27.20 | 9.3 (8.2) | 27.06 | 7.4 (6.5) | ||||
6 | 30.13 | 30.14 | 9.1 (8.1) | ||||||
7 | 34.36 | 34.18 | 7.5 (7.5) | ||||||
B1(PF6)4 | 1 | 18.87 | 19.33 | 6.6 (5.1) | 19.31 | 12 (10) | 90 | ||
2’ | 21.00 | 21.20 | 3.4 (3.2) | 11 (8.1) | 21.26 | 2.9 (2.8) | 7.6 (5.4) | ||
2 | 22.27 | 22.06 | 11 (5.1) | 22.12 | 12 (5.5) | ||||
3 | 23.17 | 23.03 | 14 (11) | 23.16 | 8.0 (6.6) | ||||
4 | 24.96 | 24.97 | 15 (13) | 24.80 | 7.5 (6.6) | ||||
5 | 27.21 | 27.02 | 14 (13) | 27.10 | 7.0 (6.2) | ||||
6 | 30.22 | 30.00 | 15 (13) | ||||||
7 | 34.34 | 34.26 | 12 (11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelczarski, D.; Korolevych, O.; Gierczyk, B.; Zalas, M.; Makowska-Janusik, M.; Stampor, W. Electronic States of Tris(bipyridine) Ruthenium(II) Complexes in Neat Solid Films Investigated by Electroabsorption Spectroscopy. Materials 2022, 15, 2278. https://doi.org/10.3390/ma15062278
Pelczarski D, Korolevych O, Gierczyk B, Zalas M, Makowska-Janusik M, Stampor W. Electronic States of Tris(bipyridine) Ruthenium(II) Complexes in Neat Solid Films Investigated by Electroabsorption Spectroscopy. Materials. 2022; 15(6):2278. https://doi.org/10.3390/ma15062278
Chicago/Turabian StylePelczarski, Daniel, Oleksandr Korolevych, Błażej Gierczyk, Maciej Zalas, Małgorzata Makowska-Janusik, and Waldemar Stampor. 2022. "Electronic States of Tris(bipyridine) Ruthenium(II) Complexes in Neat Solid Films Investigated by Electroabsorption Spectroscopy" Materials 15, no. 6: 2278. https://doi.org/10.3390/ma15062278
APA StylePelczarski, D., Korolevych, O., Gierczyk, B., Zalas, M., Makowska-Janusik, M., & Stampor, W. (2022). Electronic States of Tris(bipyridine) Ruthenium(II) Complexes in Neat Solid Films Investigated by Electroabsorption Spectroscopy. Materials, 15(6), 2278. https://doi.org/10.3390/ma15062278