Effectiveness of Some Novel Ionic Liquids on Mild Steel Corrosion Protection in Acidic Environment: Experimental and Theoretical Inspections
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. BBMImIM, BMImIM and BMPyrIM Ionic Liquids
2.3. Electrochemical Measurements
2.4. Surface Examination
2.5. Quantum Chemical Calculation
3. Results and Discussion
3.1. Potentiodynamic Polarization Measurements (PDP)
3.2. Adsorption Isotherm
3.3. EIS Study
3.4. Surface Characterization of Mild Steel
3.4.1. Scanning Electron Microscopy Study
3.4.2. Energy-Dispersive X-ray Spectroscopy
3.4.3. Atomic Force Microscopy Analysis
3.4.4. ATR-FTIR Study
3.5. Quantum Chemical Study
3.6. Corrosion Inhibition Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nazeer, A.A.; Madkour, M. Potential use of smart coatings for corrosion protection of metals and alloys: A review. J. Mol. Liq. 2018, 253, 11–22. [Google Scholar] [CrossRef]
- Sastri, V.S. Corrosion Inhibitors: Principles and Applications; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Nazeer, A.A.; Shalabi, K.; Fouda, A.S. Corrosion inhibition of carbon steel by Roselle extract in hydrochloric acid solution: Electrochemical and surface study. Res. Chem. Intermed. 2014, 41, 4833–4850. [Google Scholar] [CrossRef]
- Alsawah, M.; Abdel-Nazeer, A.; Salah, L.; Durmuş, M.; Makhseed, S. Novel azaphthalocyanines with efficient anti-corrosion capability: Effect of halogens and heavy metals. J. Mol. Liq. 2019, 293, 111545. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, S.; Zhang, S.; He, Q.; Li, W. Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium. Corros. Sci. 2014, 87, 366–375. [Google Scholar] [CrossRef]
- Umoren, S.A.; Eduok, U. Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review. Carbohydr. Polym. 2016, 140, 314–341. [Google Scholar] [CrossRef]
- El-Etre, A.; Abdallah, M.; El-Tantawy, Z. Corrosion inhibition of some metals using lawsonia extract. Corros. Sci. 2005, 47, 385–395. [Google Scholar] [CrossRef]
- Singh, P.; Ebenso, E.E.; Olasunkanmi, L.O.; Obot, I.B.; Quraishi, M. Electrochemical, Theoretical, and Surface Morphological Studies of Corrosion Inhibition Effect of Green Naphthyridine Derivatives on Mild Steel in Hydrochloric Acid. J. Phys. Chem. C 2016, 120, 3408–3419. [Google Scholar] [CrossRef]
- Mohammadinejad, R.; Karimi, S.; Iravani, S.; Varma, R.S. Plant-derived nanostructures: Types and applications. Green Chem. 2015, 18, 20–52. [Google Scholar] [CrossRef]
- Varma, R.S. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014, 16, 2027–2041. [Google Scholar] [CrossRef]
- Jeon, H.; Lim, C.; Lee, J.M.; Kim, S. Chemical assay-guided natural product isolation via solid-supported chemodosimetric fluorescent probe. Chem. Sci. 2015, 6, 2806–2811. [Google Scholar] [CrossRef] [Green Version]
- Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem. 2014, 16, 2958–2975. [Google Scholar] [CrossRef]
- Gece, G. Drugs: A review of promising novel corrosion inhibitors. Corros. Sci. 2011, 53, 3873–3898. [Google Scholar] [CrossRef]
- Lozano, I.; Mazario, E.; Olivares-Xometl, C.; Likhanova, N.; Herrasti, P. Corrosion behaviour of API 5LX52 steel in HCl and H2SO4 media in the presence of 1,3-dibencilimidazolio acetate and 1,3-dibencilimidazolio dodecanoate ionic liquids as inhibitors. Mater. Chem. Phys. 2014, 147, 191–197. [Google Scholar] [CrossRef]
- Muthukrishnan, P.; Jeyaprabha, B.; Prakash, P. Adsorption and corrosion inhibiting behavior of Lannea coromandelica leaf extract on mild steel corrosion. Arab. J. Chem. 2017, 10, S2343–S2354. [Google Scholar] [CrossRef] [Green Version]
- Verma, C.; Ebenso, E.E.; Quraishi, M. Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview. J. Mol. Liq. 2017, 233, 403–414. [Google Scholar] [CrossRef]
- Chen, Y.; Mu, T. Revisiting greenness of ionic liquids and deep eutectic solvents. Green Chem. Eng. 2021, 2, 174–186. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Rogers, R.D.; Seddon, K.R. Ionic Liquids: Industrial Applications to Green Chemistry; ACS Symposium Series 818; American Chemical Society: Washington, DC, USA, 2002. [Google Scholar]
- Zheng, X.; Zhang, S.; Li, W.; Gong, M.; Yin, L. Experimental and theoretical studies of two imidazolium-based ionic liquids as inhibitors for mild steel in sulfuric acid solution. Corros. Sci. 2015, 95, 168–179. [Google Scholar] [CrossRef]
- Yesudass, S.; Olasunkanmi, L.O.; Bahadur, I.; Kabanda, M.M.; Obot, I.B.; Ebenso, E.E. Experimental and theoretical studies on some selected ionic liquids with different cations/anions as corrosion inhibitors for mild steel in acidic medium. J. Taiwan Inst. Chem. E 2016, 64, 252–268. [Google Scholar] [CrossRef]
- Ma, Y.; Han, F.; Li, Z.; Xia, C. Acidic-Functionalized Ionic Liquid as Corrosion Inhibitor for 304 Stainless Steel in Aqueous Sulfuric Acid. ACS Sustain. Chem. Eng. 2016, 4, 5046–5052. [Google Scholar] [CrossRef]
- Kannan, P.; Karthikeyan, J.; Murugan, P.; SubbaRao, T.; Rajendran, N. Corrosion inhibition effect of novel methyl benzimidazolium ionic liquid for carbon steel in HCl medium. J. Mol. Liq. 2016, 221, 368–380. [Google Scholar] [CrossRef]
- Azeez, F.A.; Al-Rashed, O.A.; Abdel Nazeer, A. Controlling of mild-steel corrosion in acidic solution using environmentally friendly ionic liquid inhibitors: Effect of alkyl chain. J. Mol. Liq. 2018, 265, 654–663. [Google Scholar] [CrossRef]
- Likhanova, N.; Domínguez-Aguilar, M.A.; Olivares-Xometl, O.; Nava-Entzana, N.; Arce, E.; Dorantes-Rosales, H.J. The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment. Corros. Sci. 2010, 52, 2088–2097. [Google Scholar] [CrossRef]
- Sasikumar, Y.; Adekunle, A.; Olasunkanmi, L.; Bahadur, I.; Baskar, R.; Kabanda, M.; Obot, I.B.; Ebenso, E. Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic medium. J. Mol. Liq. 2015, 211, 105–118. [Google Scholar] [CrossRef]
- Yousefi, A.; Javadian, S.; Dalir, N.; Kakemam, J.; Akbari, J. Imidazolium-based ionic liquids as modulators of corrosion inhibition of SDS on mild steel in hydrochloric acid solutions: Experimental and theoretical studies. RSC Adv. 2015, 5, 11697–11713. [Google Scholar] [CrossRef]
- Chong, A.L.; Mardel, J.I.; MacFarlane, D.; Forsyth, M.; Somers, A.E. Synergistic Corrosion Inhibition of Mild Steel in Aqueous Chloride Solutions by an Imidazolinium Carboxylate Salt. ACS Sustain. Chem. Eng. 2015, 4, 1746–1755. [Google Scholar] [CrossRef]
- Al-Rashed, O.A.; Nazeer, A.A. Ionic liquids with superior protection for mild steel in acidic media: Effects of anion, cation, and alkyl chain length. J. Mol. Liq. 2019, 288, 111015. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, L. Basic ionic liquids with imidazole anion: New reagents to remove naphthenic acids from crude oil with high total acid number. Fuel 2012, 99, 83–87. [Google Scholar] [CrossRef]
- Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The density functional viewpoint. J. Chem. Phys. 1978, 68, 3801–3807. [Google Scholar] [CrossRef]
- Ali, A.A.; Madkour, M.; Al Sagheer, F.; Nazeer, A.A. Alumina lath-like structure-rGO-PVDF hybrid film formation with high-performance corrosion protection for 316L stainless-steel alloy. J. Mater. Res. Technol. 2021, 15, 3694–3707. [Google Scholar] [CrossRef]
- Mandour, H.S.; Nazeer, A.A.; Al-Hetlani, E.; Madkour, M.; Abdel-Monem, Y.K. Organic nanoparticles of acetohydrazides as novel inhibitors for mild steel corrosion. New J. Chem. 2018, 42, 5914–5922. [Google Scholar] [CrossRef]
- Nazeer, A.A.; Ashour, E.; Allam, N.K. Potential of 5-methyl 1-H benzotriazole to suppress the dissolution of α-aluminum bronze in sulfide-polluted salt water. Mater. Chem. Phys. 2014, 144, 55–65. [Google Scholar] [CrossRef]
- Jamalizadeh, E.; Hosseini, S.; Jafari, A. Quantum chemical studies on corrosion inhibition of some lactones on mild steel in acid media. Corros. Sci. 2009, 51, 1428–1435. [Google Scholar] [CrossRef]
- Behpour, M.; Ghoreishi, S.; Soltani, N.; Salavati-Niasari, M.; Hamadanian, M.; Gandomi, A. Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution. Corros. Sci. 2008, 50, 2172–2181. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, B.; Liu, Y.; Yang, W.; Yin, X.; Chen, Y.; Le, J.; Chen, Z. Corrosion inhibition properties of two imidazolium ionic liquids with hydrophilic tetrafluoroborate and hydrophobic hexafluorophosphate anions in acid medium. J. Ind. Eng. Chem. 2017, 56, 234–247. [Google Scholar] [CrossRef]
- Shalabi, K.; Nazeer, A.A. Ethoxylates nonionic surfactants as promising environmentally safe inhibitors for corrosion protection of reinforcing steel in 3.5% NaCl saturated with Ca(OH)2 solution. J. Mol. Struct. 2019, 1195, 863–876. [Google Scholar] [CrossRef]
- Valcarce, M.B.; Vázquez, M. Carbon steel passivity examined in solutions with a low degree of carbonation: The effect of chloride and nitrite ions. Mater. Chem. Phys. 2008, 115, 313–321. [Google Scholar] [CrossRef]
- Flis, J.; Zakroczymski, T. Impedance Study of Reinforcing Steel in Simulated Pore Solution with Tannin. J. Electrochem. Soc. 1996, 143, 2458–2464. [Google Scholar] [CrossRef]
- Boubour, E.; Lennox, R.B. Stability of ω-functionalized self-assembled monolayers as a function of applied potential. Langmuir 2000, 16, 7464–7470. [Google Scholar] [CrossRef]
- Nazeer, A.A.; Al-Hetlani, E.; Amin, M.O.; Quiñones-Ruiz, T.; Lednev, I.K. A Poly (Butyl Methacrylate)/Graphene Oxide/TiO2 Nanocomposite Coating with Superior Corrosion Protection for AZ31 Alloy in Chloride Solution. Chem. Eng. J. 2019, 361, 485–498. [Google Scholar] [CrossRef]
- Salasi, M.; Shahrabi, T.; Roayaei, E.; Aliofkhazraei, M. The electrochemical behaviour of environment-friendly inhibitors of silicate and phosphonate in corrosion control of carbon steel in soft water media. Mater. Chem. Phys. 2007, 104, 183–190. [Google Scholar] [CrossRef]
- Qureshi, Z.S.; Deshmukh, K.M.; Bhor, M.D.; Bhanage, B.M. Bronsted acidic ionic liquid as an efficient and reusable catalyst for transesterification of β-ketoesters. Catal. Commun. 2009, 10, 833–837. [Google Scholar] [CrossRef]
- Hayyan, M.; Mjalli, F.S.; Hashim, M.; AlNashe, I.M.; Tan, X.; Chooi, K. Generation of Superoxide Ion in Trihexyl (Tetradecyl) Phosphonium bis (Trifluoromethylsulfonyl) imide Room Temperature Ionic Liquid. J. Appl. Sci. 2010, 10, 1176–1180. [Google Scholar] [CrossRef]
- Nazeer, A.A.; Allam, N.K.; Fouda, A.; Ashour, E. Effect of cysteine on the electrochemical behavior of Cu10Ni alloy in sulfide polluted environments: Experimental and theoretical aspects. Mater. Chem. Phys. 2012, 136, 1–9. [Google Scholar] [CrossRef]
- Gece, G.; Bilgiç, S. Quantum chemical study of some cyclic nitrogen compounds as corrosion inhibitors of steel in NaCl media. Corros. Sci. 2009, 51, 1876–1878. [Google Scholar] [CrossRef]
- Verma, C.; Olasunkanmi, L.O.; Bahadur, I.; Lgaz, H.; Quraishi, M.; Haque, J.; Sherif, E.-S.M.; Ebenso, E.E. Experimental, density functional theory and molecular dynamics supported adsorption behavior of environmental benign imidazolium based ionic liquids on mild steel surface in acidic medium. J. Mol. Liq. 2018, 273, 1–15. [Google Scholar] [CrossRef]
IL Name | Chemical Structure | Molar Mass |
---|---|---|
bis(1-butyl-3-methyl-imidazolium Imidazolate) BBMImIM | 354.45 | |
1-butyl-3-methyl-imidazolium Imidazolate BMImIM | 206.29 | |
1-butyl-1-methyl-pyrrolidinium Imidazolate BMPyrIM | 209.33 |
Conc., M | jcorr., µA cm−2 | −Ecorr., mV | −βc, mV dec.−1 | βa, mV dec.−1 | θ | ηpp % | |
---|---|---|---|---|---|---|---|
Blank | - | 4776 | 461 | 283 | 198 | -- | -- |
BMPyrIM | 5 × 10−5 | 2316 | 463 | 196 | 109 | 0.5151 | 51.51 |
1 × 10−4 | 1414 | 465 | 191 | 103 | 0.7039 | 70.39 | |
5 × 10−4 | 869 | 468 | 163 | 92 | 0.8180 | 81.80 | |
1 × 10−3 | 558 | 474 | 142 | 78 | 0.8832 | 88.32 | |
5 × 10−3 | 367 | 477 | 138 | 75 | 0.9232 | 92.32 | |
BMImIM | 5 × 10−5 | 2029 | 459 | 212 | 192 | 0.5752 | 57.52 |
1 × 10−4 | 1284 | 455 | 207 | 188 | 0.7312 | 73.12 | |
5 × 10−4 | 755 | 454 | 199 | 143 | 0.8419 | 84.19 | |
1 × 10−3 | 436 | 450 | 187 | 100 | 0.9087 | 90.87 | |
5 × 10−3 | 271 | 449 | 153 | 77 | 0.9433 | 94.33 | |
BBMImIM | 5 × 10−5 | 1809 | 458 | 210 | 178 | 0.6212 | 62.12 |
1 × 10−4 | 1085 | 453 | 200 | 154 | 0.7728 | 77.28 | |
5 × 10−4 | 644 | 450 | 180 | 143 | 0.8652 | 86.52 | |
1 × 10−3 | 323 | 446 | 174 | 117 | 0.9324 | 93.24 | |
5 × 10−3 | 66 | 431 | 170 | 79 | 0.9862 | 98.62 |
Comp. | Langmuir Isotherm | ||
---|---|---|---|
R2 | Kads (M−1) | −ΔGads (kJ mol−1) | |
BMPyrIM | 0.99975 | 29,877 | 34.91 |
BMImIM | 0.99983 | 81,234 | 37.23 |
BBMImIM | 0.99991 | 98,766 | 39.98 |
Conc., M | Rs Ω cm2 | Rct Ω cm2 | n | Cdl µF cm−2 | θ | ηEIS % | χ2 | |
---|---|---|---|---|---|---|---|---|
Blank | 1.52 | 23.3 | 0.833 | 102.3 | -- | -- | 0.00024 | |
BMPyrIM | 5 × 10−5 | 1.36 | 45.9 | 0.926 | 81.9 | 0.4924 | 49.24 | 0.00049 |
1 × 10−4 | 1.32 | 81.7 | 0.911 | 64.7 | 0.7148 | 71.48 | 0.00051 | |
5 × 10−4 | 1.30 | 111.6 | 0.920 | 57.3 | 0.7912 | 79.12 | 0.00044 | |
1 × 10−3 | 1.35 | 182.5 | 0.914 | 47.5 | 0.8723 | 87.23 | 0.00039 | |
5 × 10−3 | 1.26 | 266.1 | 0.910 | 44.6 | 0.9124 | 91.24 | 0.00031 | |
BMImIM | 5 × 10−5 | 1.44 | 57.8 | 0.932 | 74.4 | 0.5969 | 59.69 | 0.00047 |
1 × 10−4 | 1.32 | 91.7 | 0.925 | 61.5 | 0.7459 | 74.59 | 0.00045 | |
5 × 10−4 | 1.31 | 151.6 | 0.915 | 53.4 | 0.8463 | 84.63 | 0.00039 | |
1 × 10−3 | 1.38 | 239.3 | 0.909 | 44.3 | 0.9026 | 90.26 | 0.00033 | |
5 × 10−3 | 1.29 | 381.1 | 0.912 | 37.7 | 0.9389 | 93.89 | 0.00026 | |
BBMImIM | 5 × 10−5 | 1.42 | 64.8 | 0.917 | 62.2 | 0.6404 | 64.04 | 0.00042 |
1 × 10−4 | 1.39 | 103.1 | 0.908 | 53.1 | 0.7740 | 77.40 | 0.00033 | |
5 × 10−4 | 1.24 | 165.6 | 0.902 | 41.4 | 0.8593 | 85.93 | 0.00030 | |
1 × 10−3 | 1.29 | 329.6 | 0.899 | 32.2 | 0.9293 | 92.93 | 0.00031 | |
5 × 10−3 | 1.27 | 781.3 | 0.905 | 29.5 | 0.9702 | 97.02 | 0.00029 |
EHOMO, eV | ELUMO, eV | ΔE, eV | μ (Debye) | |
---|---|---|---|---|
BMPyrIM | −6.09 | −1.38 | 4.71 | 9.64 |
BMImIM | −5.69 | −1.63 | 4.06 | 13.22 |
BBMImIM | −5.44 | −1.82 | 3.62 | 16.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rashed, O.; Abdel Nazeer, A. Effectiveness of Some Novel Ionic Liquids on Mild Steel Corrosion Protection in Acidic Environment: Experimental and Theoretical Inspections. Materials 2022, 15, 2326. https://doi.org/10.3390/ma15062326
Al-Rashed O, Abdel Nazeer A. Effectiveness of Some Novel Ionic Liquids on Mild Steel Corrosion Protection in Acidic Environment: Experimental and Theoretical Inspections. Materials. 2022; 15(6):2326. https://doi.org/10.3390/ma15062326
Chicago/Turabian StyleAl-Rashed, Osama, and Ahmed Abdel Nazeer. 2022. "Effectiveness of Some Novel Ionic Liquids on Mild Steel Corrosion Protection in Acidic Environment: Experimental and Theoretical Inspections" Materials 15, no. 6: 2326. https://doi.org/10.3390/ma15062326
APA StyleAl-Rashed, O., & Abdel Nazeer, A. (2022). Effectiveness of Some Novel Ionic Liquids on Mild Steel Corrosion Protection in Acidic Environment: Experimental and Theoretical Inspections. Materials, 15(6), 2326. https://doi.org/10.3390/ma15062326