Tensile Examination and Strength Evaluation of Latewood in Japanese Cedar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Tensile Examination Procedure
2.3. Tensile Strength Evaluation by Weibull Statistics
3. Results and Discussion
4. Conclusions
- Two fracture modes in the L-T plane of latewood, tensile fracture and shear fracture, were revealed by tensile examination. This study suggested that the two fracture modes depend on the tilt of tracheids observed in the L-T plane.
- The average tensile strength by Weibull statistics analysis of the shear-fractured specimen was approximately 29% lower than that in the tensile-fractured specimen.
- Fibrils from within the tracheid were closely fully related to tensile fractures in latewood. On the other hand, the shear crack occurred at an angle of 12 to 20° in the tensile direction. There were two features of shear fractures: interfacial debonding of tracheids and crack propagation of the intercellular layer in ray cells. Moreover, it was found as evidence to decide the existence of different fracture strength levels on the interface tracheids and ray cells under shearing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Transforming Food and Agriculture to Achieve the SDGs; Technical Reference Document; FAO: Rome, Italy, 2018. [Google Scholar]
- Gold, S.; Rubik, F. Consumer Attitudes towards Timber as a Construction Material and towards Timber Frame Houses—Selected Findings of a Representative Survey among the German Population. J. Clean. Prod. 2009, 17, 303–309. [Google Scholar] [CrossRef]
- Chuki, S.; Sarkar, R.; Kurar, R. A Review on Traditional Architecture Houses in Buddhist Culture. Am. J. Civil Eng. Arch. 2017, 5, 113–123. [Google Scholar] [CrossRef]
- Treu, A.; Zimmer, K.; Brischke, C.; Larnøy, E.; Gobakken, L.R.; Aloui, F.; Cragg, S.M.; Flæte, P.; Humar, M.; Westin, M.; et al. Durability and Protection of Timber Structures in Marine Environments in Europe: An Overview. BioResources 2019, 14, 10161–10184. [Google Scholar] [CrossRef]
- Smith, R. Comparison of Perception versus Reality in Timber Bridge Performance. J. Mater. Civil Eng. 1998, 10, 238–243. [Google Scholar] [CrossRef]
- Yazdani, N. Parametric Study on Behavior of Stress-Laminated Southern Pin Bridge Decks. J. Transp. Res. Rec. 2000, 1740, 85–95. [Google Scholar] [CrossRef]
- Liuzzi, M.A.; Fiore, A.; Gieco, R. Some Structural Design Issues on a Timber Bridge for Pedestrians. Procedia Manuf. 2020, 44, 583–590. [Google Scholar] [CrossRef]
- Iqbal, A. Developments in Tall Wood and Hybrid Buildings and Environmental Impacts. Sustainability 2021, 13, 11881. [Google Scholar] [CrossRef]
- Salvadori, V. An Overview of the Tallest Timber Buildings in the World. In 8° Forum dell’Edilizia in Legno, Multistory Timber Build; 2019; pp. 1–10. Available online: https://www.researchgate.net/publication/338913741 (accessed on 15 January 2022).
- Van de Kuilen, J.W.G.; Ceccotti, A.; Xia, Z.; He, M. Very Tall Wooden Buildings with Cross Laminated Timber. Procedia Eng. 2011, 14, 1621–1628. [Google Scholar] [CrossRef] [Green Version]
- Fleming, P.; Smith, S.; Rmage, M. Measuring-Up in Timber: A Critical Perspective on Mid- and High-Rise Timber Buildings Design; Cambridge University Press: Cambridge, UK, 2014; Volume 18, pp. 20–30. [Google Scholar]
- Foster, R.M.; Reynolds, T.P.S.; Ramage, M.H. Proposal for Defining a Tall, Timber Building. J. Struc. Eng. 2016, 142, 02516001. [Google Scholar] [CrossRef] [Green Version]
- Foster, R.M.; Reynolds, T.P.S.; Ramage, M.H. Rethinking Height Criteria in the Context of Tall Timber. CTBUH J. 2017, 4, 28–33. [Google Scholar]
- Michaela, E.; Olivier, A.; John, W.C.D.; Joanna, H.; Lennart, S. Experimental Micromechanical Characterization of Wood Cell Walls. Wood Sci. Technol. 2013, 17, 163–182. [Google Scholar]
- Shaheda, T.A.; Michael, S.; Erik, S.; Thomas, K.B. A Numerical Study of the Stiffness and Strength of Cross-Laminated Timber Wall-to-Floor Connections under Compression Perpendicular to the Grain. Buildings 2021, 11, 442. [Google Scholar]
- Ministry of Agriculture, Forestry and Fisheries in Japan. Available online: https://www.maff.go.jp/e/index.html (accessed on 15 January 2022).
- Iwanaga, S.; Hayafune, M.; Tanaka, W.; Ikami, Y. Domestic Large-Diameter Log Use in the Japanese Lumber Manufacturing Industry: Focusing on Regional Differences. J. Forest Res. 2021, 27, 8–14. [Google Scholar] [CrossRef]
- Ukyo, S.; Ido, H.; Nagao, H.; Kato, H. Simultaneous Determination of Shear Strength and Shear Modulus in Glued-Laminated Timber using a Full-Scale Shear Block Specimen. J. Wood. Sci. 2010, 56, 262–266. [Google Scholar] [CrossRef]
- Ido, H.; Nagao, H.; Kato, H.; Ogiso, J.; Miyatake, A. Effects of the Width and Lay-up of Sugi Cross-Laminated Timber (CLT) on its Dynamic and Static Elastic Moduli, and Tensile Strength. J. Wood Sci. 2016, 62, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Totsuka, M.; Aoki, K.; Inayama, M.; Morita, K. Partial Compressive Properties of Cross Laminated Timber I. Experimental Study of Effects on Mechanical Properties of CLT of Japanese Cedar. Mokuzai Gakkaishi 2020, 66, 8–15. (In Japanese) [Google Scholar] [CrossRef]
- Yamamoto, K.; Fujita, K.; Watanabe, Y.; Miyatake, A.; Shibusawa, T.; Tanaka, S.; Kanayama, K. Flexural Property in Out-of –Plane Bending Test of Cross Laminated Timber (CLT) Composed of Different Grade Lamina of Sugi. J. Soc. Mat. Sci. Jpn. 2021, 70, 561–566. (In Japanese) [Google Scholar] [CrossRef]
- Ukyo, S.; Shindo, K.; Miyatake, A. Evaluation of Rolling Shear Modulus and Strength of Japanese Cedar Cross-Laminated Timber (CLT) Laminae. J. Wood. Sci. 2019, 65, 31. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, Y.; Murata, K.; Ikami, U.; Matsumura, J. Influence of Sawing Patterns on Lumber Quality and Yield in Large Sugi (Cryptomeria japonica) Logs. For. Prod. J. 2012, 62, 25–31. [Google Scholar] [CrossRef]
- Murata, K.; Ikami, U.; Matsumura, Y.; Todoroki, C. Sawing Patterns for Large-Diameter Sugi (Cryptomeria japonica D. Don) Sawlogs: Current Status and Future Outlook. Wood Mater. Sci. Eng. 2013, 8, 26–36. [Google Scholar] [CrossRef]
- Matsumura, Y.; Ikami, Y.; Murata, K.; Matsumura, J. Quality of Squared Lumber without Pith Sawn from Large-Diameter Sugi (Cryptomeria japonica) Logs. Mokuzai Gakkaishi 2013, 59, 138–145. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Matsumura, Y.; Murata, K.; Ikami, Y.; Ohmori, M. Application of the Wood Properties of Large-Diameter Sugi (Cryptomeria japonica) Logs to Sorting Logs and Sawing Patterns. J. Wood Sci. 2013, 59, 271–281. [Google Scholar] [CrossRef]
- Ido, H.; Kato, H.; Nagao, H.; Harada, M.; Ikami, Y.; Matsumura, Y.; Matsuda, Y.; Saito, S. Grades and Mechanical Properties of Dimension Lumber for Wood Frame Construction Obtained from Large-Diameter Sugi (Cryptomeria japonica) Logs. Mokuzai Gakkaishi 2017, 63, 282–290. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-Y.; Ko, C.-Y. Dynamic Modulus of Elasticity and Bending Properties of Large Beams of Taiwan-Grown Japanese Cedar from Different Plantation Spacing Sites. J. Wood. Sci. 1998, 44, 62–68. [Google Scholar] [CrossRef]
- Yamashita, K.; Hirakawa, Y.; Fujisawa, Y.; Nakada, R. Effects of Microfibril Angle and Density on Variation of Modulus of Elasticity of Sugi (Cryptomeria japonica) Logs among Eighteen Cultivars. Mokuzai Gakkaishi 2000, 46, 510–522. (In Japanese) [Google Scholar]
- Chuang, S.-T.; Wang, S.-Y. Evaluation of Standing Tree Quality of Japanese Cedar Grown with Different Spacing using Stress-Wave and Ultrasonic-Wave Methods. J. Wood. Sci. 2001, 47, 245–253. [Google Scholar] [CrossRef]
- Zhu, J.; Tadooka, N.; Tanaka, K. Growth and Wood Quality of Sugi (Cryptomeria japonica) Planted in Akita Prefecture (II). Juvenile/Mature Wood determination of Aged Trees. J. Wood. Sci. 2005, 51, 95–101. [Google Scholar] [CrossRef]
- Ishidoh, M.; Ishiguri, F.; Iizuka, K.; Yokota, S.; Ohno, H.; Yoshizawa, N. The Evaluation of Modulus of Elasticity at an Early Stage of Growth in Sugi (Cryptomeria japonica) Wood using S2 Microfibril Angle of Latewood Tracheids as a Wood Quality Indicator. Mokuzai Gakkaishi 2009, 55, 10–17. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Fukui, T.; Yanase, Y.; Sawada, Y.; Fujii, Y. Estimations of the Moisture Content above the Fiber Saturation Point in Sugi Wood using the Correlation Between the Specific Dynamic Young’s Modulus and Tangent Loss. J. Wood Sci. 2020, 65, 35. [Google Scholar] [CrossRef]
- Takahashi, Y.; Ishiguri, F.; Aiso, H.; Takashima, Y.; Hiraoka, Y.; Iki, T.; Ohshima, J.; Iizuka, K.; Yokota, S. Inheritance of Static Bending Properties and Classification of Load-Deflection Curves in Cryptomeria japonica. Holzforschung 2021, 75, 105–113. [Google Scholar] [CrossRef]
- Yuki, S.; Takahashi, A.; Yamamoto, N.; Toyohiro, T. Study on Miniature Specimen for Wood Tensile Test. In Proceedings of the International Workshop on Fundamental Research for Science and Technology 2018, Bangkok, Thailand, 28–29 August 2018; pp. 86–87. [Google Scholar]
- Yuki, S.; Takahashi, A.; Yamamoto, N.; Toyohiro, T. Fracture Mode and Tensile Strength on Latewood in Japanese Cedar. In Proceedings of the International Conference on Applied Electrical and Mechanical Engineering 2019, Nakhon Phanom, Thailand, 4–6 September 2019; pp. 39–42. [Google Scholar]
- Japanese Standards Association. JIS Z2101-2009 Methods of Test for Woods; Japanese Standards Association: Tokyo, Japan, 2009. [Google Scholar]
- Jeong, G.Y.; Zink-Sharp, A.; Hindman, D.P. Tensile Properties of Earlywood and Latewood from Loblolly Pine (Pinus taeda) using Digital Image Correlation. Wood Fiber Sci. 2009, 41, 51–63. [Google Scholar]
- Roszyk, E.; Moliński, W.; Kamiński, M. Tensile Properties along the Grains of Earlywood and Latewood of Scots Pine (Pinus Sylvestri L.) in Dry and Wet State. BioResources 2016, 11, 3027–3037. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Zhang, L. Investigation of Elastic Constants and Ultimate Strengths of Korean Pine from Compression and Tension Tests. J. Wood Sci. 2018, 64, 85–96. [Google Scholar] [CrossRef] [Green Version]
- JIS Z2241-2009; Metallic Materials-Tensile Testing-Method of Test at Room Temperature. Japanese Standards Association: Tokyo, Japan, 2011.
- Yuki, S.; Takahashi, A.; Yamamoto, N.; Toyohiro, T. A Study on Evaluation for Tensile Properties of Latewood Cedar. In Proceedings of the 8th International Joint Symposium on Engineering Education, Busan, Korea, 26–27 December 2018; pp. 111–116. [Google Scholar]
- Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 293–305. [Google Scholar] [CrossRef]
- Reiterer, A.; Lichteneggerz, H.; Tscheggy, S.; Fratzl, P. Experimental Evidence for a Mechanical Function of the Cellulose Microfibril Angle in Wood Cell Walls. Phill. Mag. A 1999, 79, 2173–2184. [Google Scholar] [CrossRef]
- Babero, E.; Fernández-Sáez, J.; Navarro, C. Statistical Distribution of the Estimator of Weibull Modulus. J. Mater. Sci. Lett. 2001, 20, 847–849. [Google Scholar] [CrossRef] [Green Version]
- Deng, B.; Jiang, D. Determination of the Weibull Parameters from the Mean Value and the Coefficient of Variation of the Measured Strength for Brittle Ceramics. J. Adv. Ceram. 2017, 6, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Danzer, R.; Fischer, D. Fracture Statistics of the Brittle Materials: Weibull or Normal Distribution. Phys. Rev. 2002, E65, 067102. [Google Scholar] [CrossRef] [Green Version]
- Olkin, I.; Gleser, L.J.; Derman, C. Probability Models and Applications, 2nd ed.; World Scientific: Singapore, 2020. [Google Scholar]
- Hull, D.; Vlyne, T.W. An Introduction to Composite Materials; Cambridge University Press: New York, NY, USA, 1996. [Google Scholar]
- Côté, W.A.; Hanna, R.B. Ultrastructure Characteristics of Wood Fracture Surfaces. Wood Fiber. Sci. 1983, 15, 135–163. [Google Scholar]
- Kitahara, K. Mokuzai Butsuri; Morikita Publishing Co., Ltd.: Tokyo, Japan, 1977. (In Japanese) [Google Scholar]
- Ifju, G.; Kennedy, R.W. Some Variables Affecting Microtensile Strength of Douglas-Fir. For. Prod. J. 1962, 12, 213–217. [Google Scholar]
- Kifetew, G.; Thuvander, F.; Berglund, L.; Jindberg, H. The Effect of Drying on Wood Fracture Surfaces from Specimens Loads in Wet Condition. Wood Sci. Technol. 1998, 32, 83–94. [Google Scholar] [CrossRef]
- Ohgama, T.; Yamada, T. Young’s Moduli of Earlywood and Latewood in Transverse Direction of Softwoods. J. Soc. Mat. Sci. Jpn. 1981, 30, 707–711. (In Japanese) [Google Scholar] [CrossRef]
- Kujidani, Y.; Kitahara, R. Wood Properties of Cryptomeria japonica in Southern Kyusyu II–Characteristics of Obi-sigi Cultivars. J. Soc. Mat. Sci. Jpn. 2003, 52, 336–340. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Tsushima, S.; Koga, S.; Oda, K.; Shiraishi, S. Growth and Wood Properties of Sugi (Cryptomeria japonica) Cultivars Plamted in the Kyusyu Region. Mokuzai Gakkaishi 2005, 51, 394–401. (In Japanese) [Google Scholar] [CrossRef]
- Kujidani, Y.; Kitahara, R. Variation of Wood Properties with Height Position in the Stems of Obi-Sigi Cultivars. Mokuzai Gakkaishi 2009, 55, 198–206. (In Japanese) [Google Scholar] [CrossRef]
- Hirakawa, Y.; Yamashita, K.; Nakada, R.; Fujikawa, Y. The Effects of S2 Microfibril Angles of Latewood Tracheids and Densities on Mudulus of Elasticity Variations of Sugi Tree (Cryptomeria japonica) Logs. Mokuzai Gakkaishi 1997, 43, 717–724. [Google Scholar]
- U.S. Department Agriculture, Forest Service, Forest Product Laboratory. Wood Handbook, Wood as an Engineering Material; General Technical Report FPL-GTR-190; U.S. Department Agriculture, Forest Service, Forest Product Laboratory: Madison, WI, USA, 2010. [Google Scholar]
- Miyoshi, Y.; Furuta, Y. Rheological Consideration in Fracture of Wood in Lateral Tension. J. Wood Sci. 2016, 62, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Miyoshi, Y.; Kojiro, K.; Furuta, Y. Effects of Density and Anatomical Feature on Mechanical Properties of Various Wood Species in Lateral Tension. J. Wood Sci. 2018, 64, 509–514. [Google Scholar] [CrossRef]
- Hankinson, R.L. Investigation of Crushing Strength of Spruce at Varying Angles of Grain. Air Serv. Inf. Circ. 1921, 3, 130. [Google Scholar]
- Xavier, J.C.; Garrido, N.M.; Oliveira, M.; Morais, J.L.; Camanho, P.P.; Pierron, F. A comparison between the Iosipescu and Off-Axis Shear Test Methods for the Characterization of Pinus Pinaster Ait. Compos. Part A Appl. Sci. Manuf. 2004, 35, 827–840. [Google Scholar] [CrossRef]
- Bilko, P.; Skoratko, A.; Rurkiewicz, A.; Malyszko, L. Determination of the Shear Modulus of Pine Wood with the Arcan Test and Digital Image Correlation. Materials 2021, 14, 468. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Sinha, A. Effect of Grain Angle on Shear Strength of Douglas-Fir Wood. Holzforschung 2012, 66, 655–658. [Google Scholar] [CrossRef]
- Mania, P.; Siuda, F.; Roszyk, E. Effects of Slope Grain on Mechanical Properties of Different Wood Species. Materials 2020, 13, 1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Weibull Parameters | Elastic Modulus, E, GPa (Strain Gauge) | Fracture Strain, εf, (-) | |||||
---|---|---|---|---|---|---|---|
n | m Value | Correlation Coefficient, R | Mean Tensile Strength, | ||||
Tensile fracture | 19 | 180 | 4.8 | 0.98 | 165 | 13.3 | 0.015 ± 0.005 |
Shear fracture | 20 | 126 | 5.5 | 0.95 | 116 | 0.014 ± 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, A.; Yamamoto, N.; Ooka, Y.; Toyohiro, T. Tensile Examination and Strength Evaluation of Latewood in Japanese Cedar. Materials 2022, 15, 2347. https://doi.org/10.3390/ma15072347
Takahashi A, Yamamoto N, Ooka Y, Toyohiro T. Tensile Examination and Strength Evaluation of Latewood in Japanese Cedar. Materials. 2022; 15(7):2347. https://doi.org/10.3390/ma15072347
Chicago/Turabian StyleTakahashi, Akihiro, Naoyuki Yamamoto, Yu Ooka, and Toshinobu Toyohiro. 2022. "Tensile Examination and Strength Evaluation of Latewood in Japanese Cedar" Materials 15, no. 7: 2347. https://doi.org/10.3390/ma15072347
APA StyleTakahashi, A., Yamamoto, N., Ooka, Y., & Toyohiro, T. (2022). Tensile Examination and Strength Evaluation of Latewood in Japanese Cedar. Materials, 15(7), 2347. https://doi.org/10.3390/ma15072347