Effects of Biological and Chemical Degradation on the Properties of Scots Pine Wood—Part I: Chemical Composition and Microstructure of the Cell Wall
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparation—Wood Degradation
2.2.2. Infrared Spectroscopy
2.2.3. X-ray Diffraction
2.2.4. Surface Area and Pore Volume Measurements
2.2.5. Helium Pycnometry
2.2.6. Wood Shrinkage upon Drying and Density of Dried Wood
3. Results and Discussion
3.1. Fourier-Transform Infrared Spectroscopy (FT-IR)
3.2. Principal Component Analysis (PCA)
3.3. X-ray Diffraction (XRD)
3.4. Wood Shrinkage and the Cell Wall Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- İlker, U. Depictions on Wood: Acceptation and Internalization of Wood, Which Is an Intercultural Interaction Tool, as “A Valuable Object”(Wood Is Valuable). Muğla J. Sci. Technol. 2016, 2, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Monaco, A.L.; Balletti, F.; Pelosi, C. Wood in Cultural Heritage. Properties and Conservation of Historical Wooden Artefacts. Eur. J. Sci. Theol. 2018, 14, 161–171. [Google Scholar]
- Broda, M.; Hill, C.A. Conservation of Waterlogged Wood—Past, Present and Future Perspectives. Forests 2021, 12, 1193. [Google Scholar] [CrossRef]
- Zisi, A. Forest Wood through the Eyes of a Cultural Conservator. Forests 2021, 12, 1001. [Google Scholar] [CrossRef]
- Wei, T.S.; Geng, B.J.; Qi, L.H.; Tiong, G.K.; Chi, K.S.; Hoong, W.W. Effect of Bleaching Using Sodium Hydroxide on Pulp Derived from Sesbania Grandiflora. JTRSS 2018, 6, 1–3. [Google Scholar] [CrossRef]
- Larocque, G.L.; Maass, O. The Mechanism of the Alkaline Delignification of Wood. Can. J. For. Res. 1941, 19, 1–16. [Google Scholar] [CrossRef]
- Cai, M.; Takagi, H.; Nakagaito, A.N.; Katoh, M.; Ueki, T.; Waterhouse, G.I.; Li, Y. Influence of Alkali Treatment on Internal Microstructure and Tensile Properties of Abaca Fibers. Ind. Crops Prod. 2015, 65, 27–35. [Google Scholar] [CrossRef]
- Raia, R.Z.; Iwakiri, S.; Trianoski, R.; Andrade, A.S.D.; Kowalski, E.L. Effects of Alkali Treatment on Modification of the Pinus Fibers. Matéria (Rio de Janeiro) 2021, 26. [Google Scholar] [CrossRef]
- Xu, E.; Wang, D.; Lin, L. Chemical Structure and Mechanical Properties of Wood Cell Walls Treated with Acid and Alkali Solution. Forests 2020, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Bakri, M.K.B.; Jayamani, E.; Hamdan, S.; Rahman, M.R.; Soon, K.H.; Kakar, A. Fundamental Study on the Effect of Alkaline Treatment on Natural Fibers Structures and Behaviors. J. Eng. Appl. Sci. 2016, 11, 8759–8763. [Google Scholar]
- Tahira, A.; Howard, W.; Pennington, E.R.; Kennedy, A. Mechanical Strength Studies on Degraded Waterlogged Wood Treated with Sugars. Stud. Conserv. 2017, 62, 223–228. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Zhang, B.; Hu, Y. A Comparative Study of Reinforcement Materials for Waterlogged Wood Relics in Laboratory. J. Cult. Herit. 2019, 36, 94–102. [Google Scholar] [CrossRef]
- Kennedy, A.; Pennington, E.R. Conservation of Chemically Degraded Waterlogged Wood with Sugars. Stud. Conserv. 2014, 59, 194–201. [Google Scholar] [CrossRef]
- Pournou, A. Wood Deterioration by Terrestrial Microorganisms. In Biodeterioration of Wooden Cultural Heritage; Springer: Berlin/Heidelberg, Germany, 2020; pp. 345–424. ISBN 978-3-030-46504-9. [Google Scholar]
- Goodell, B.; Qian, Y.; Jellison, J. Fungal Decay of Wood: Soft Rot—Brown Rot—White Rot. In Development of Commercial Wood Preservatives; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2008; Volume 982, pp. 9–31. ISBN 978-0-8412-3951-7. [Google Scholar]
- Blanchette, R.A. A Review of Microbial Deterioration Found in Archaeological Wood from Different Environments. Int. Biodeterior. Biodegrad. 2000, 46, 189–204. [Google Scholar] [CrossRef]
- Pournou, A. Wood Deterioration by Aquatic Microorganisms. In Biodeterioration of Wooden Cultural Heritage: Organisms and Decay Mechanisms in Aquatic and Terrestrial Ecosystems; Pournou, A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 177–260. ISBN 978-3-030-46504-9. [Google Scholar]
- Pedersen, N.B.; Björdal, C.G.; Jensen, P.; Felby, C. 13:Bacterial Degradation of Archaeological Wood in Anoxic Waterlogged Environments. In Stability of Complex Carbohydrate Structures; Royal Society of Chemistry: London, UK, 2012; pp. 160–187. [Google Scholar]
- Bagley, S.T.; Richter, D.L. Biodegradation by Brown Rot Fungi. In Industrial Applications; Osiewacz, H.D., Ed.; The Mycota; Springer: Berlin/Heidelberg, Germany, 2002; pp. 327–341. ISBN 978-3-662-10378-4. [Google Scholar]
- Zhang, N.; Li, S.; Xiong, L.; Hong, Y.; Chen, Y. Cellulose-Hemicellulose Interaction in Wood Secondary Cell-Wall. Model. Simul. Mat. Sci. Eng. 2015, 23, 085010. [Google Scholar] [CrossRef]
- Bouslimi, B.; Koubaa, A.; Bergeron, Y. Effects of Biodegradation by Brown-Rot Decay on Selected Wood Properties in Eastern White Cedar (Thuja Occidentalis L.). Int. Biodeter. Biodegr. 2014, 87, 87–98. [Google Scholar] [CrossRef]
- García-Iruela, A.; García Esteban, L.; García Fernández, F.; de Palacios, P.; Rodriguez-Navarro, A.B.; Sánchez, L.G.; Hosseinpourpia, R. Effect of Degradation on Wood Hygroscopicity: The Case of a 400-Year-Old Coffin. Forests 2020, 11, 712. [Google Scholar] [CrossRef]
- Zabel, R.A.; Morrell, J.J. Wood Microbiology: Decay and Its Prevention; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Broda, M.; Popescu, C.-M. Natural Decay of Archaeological Oak Wood versus Artificial Degradation Processes—an FT-IR Spectroscopy and X-ray Diffraction Study. Spectrochim Acta A-M 2019, 209, 280–287. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Larsson, P.T.; Tibirna, C.M.; Vasile, C. Characterization of Fungal-Degraded Lime Wood by X-ray Diffraction and Cross-Polarization Magic-Angle-Spinning 13C-Nuclear Magnetic Resonance Spectroscopy. Appl. Spectrosc. 2010, 64, 1054–1060. [Google Scholar] [CrossRef]
- Pizzo, B.; Pecoraro, E.; Macchioni, N. A New Method to Quantitatively Evaluate the Chemical Composition of Waterlogged Wood by Means of Attenuated Total Reflectance Fourier Transform Infrared (ATR FT-IR) Measurements Carried out on Wet Material. Appl. Spectrosc. 2013, 67, 553–562. [Google Scholar] [CrossRef]
- Hermans, P.H.; Weidinger, A. Quantitative X-ray Investigations on the Crystallinity of Cellulose Fibers. A Background Analysis. J. Appl. Phys. 1948, 19, 491–506. [Google Scholar] [CrossRef]
- Kimura, M.; Qi, Z.-D.; Isogai, A. Analysis of Mesopore Structures in Wood Cell Walls and Pulp Fibers by Nitrogen Adsorption Method. Nord. Pulp Pap. Res. J. 2016, 31, 198–204. [Google Scholar] [CrossRef]
- Broda, M.; Curling, S.F.; Spear, M.J.; Hill, C.A. Effect of Methyltrimethoxysilane Impregnation on the Cell Wall Porosity and Water Vapour Sorption of Archaeological Waterlogged Oak. Wood Sci. Technol. 2019, 53, 703–726. [Google Scholar] [CrossRef] [Green Version]
- Broda, M.; Curling, S.F.; Frankowski, M. The Effect of the Drying Method on the Cell Wall Structure and Sorption Properties of Waterlogged Archaeological Wood. Wood Sci. Technol. 2021, 55, 971–989. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Donato, I.D.; Lazzara, G. Porosity Determination with Helium Pycnometry as a Method to Characterize Waterlogged Woods and the Efficacy of the Conservation Treatments. Archaeometry 2012, 54, 906–915. [Google Scholar] [CrossRef] [Green Version]
- Zauer, M.; Pfriem, A.; Wagenführ, A. Toward Improved Understanding of the Cell-Wall Density and Porosity of Wood Determined by Gas Pycnometry. Wood Sci. Technol. 2013, 47, 1197–1211. [Google Scholar] [CrossRef]
- Hill, C.A.S.; Ormondroyd, G.A. Dimensional Changes in Corsican Pine (Pinus Nigra Arnold) Modified with Acetic Anhydride Measured Using a Helium Pycnometer. Holzforschung 2004, 58, 544–547. [Google Scholar] [CrossRef]
- Kondo, T. Hydrogen Bonds in Cellulose and Cellulose Derivatives. In Polysaccharides: Structural Diversity and Functional Versatility; CRC Press: Boca Raton, FL, USA, 2005; pp. 69–98. [Google Scholar]
- Popescu, C.; Jones, D.; Kržišnik, D.; Humar, M. Determination of the Effectiveness of a Combined Thermal/Chemical Wood Modification by the Use of FT–IR Spectroscopy and Chemometric Methods. J. Mol. Struct. 2020, 1200, 127133. [Google Scholar] [CrossRef]
- Langer, G.J.; Bußkamp, J.; Terhonen, E.; Blumenstein, K. Chapter 10-Fungi Inhabiting Woody Tree Tissues. In Forest Microbiology; Asiegbu, F.O., Kovalchuk, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 175–205. ISBN 978-0-12-822542-4. [Google Scholar]
- Zabel, R.A.; Morrell, J.J. (Eds.) Chapter Eight-Chemical Changes in Wood Caused by Decay Fungi. In Wood Microbiology, 2nd ed.; Academic Press: San Diego, CA, USA, 2020; pp. 215–244. ISBN 978-0-12-819465-2. [Google Scholar]
- Goodell, B.; Winandy, J.E.; Morrell, J.J. Fungal Degradation of Wood: Emerging Data, New Insights and Changing Perceptions. Coatings 2020, 10, 1210. [Google Scholar] [CrossRef]
- Durmaz, S.; Özgenç, Ö.; Boyacı, İ.H.; Yıldız, Ü.C.; Erişir, E. Examination of the Chemical Changes in Spruce Wood Degraded by Brown-Rot Fungi Using FT-IR and FT-Raman Spectroscopy. Vib. Spectrosc. 2016, 85, 202–207. [Google Scholar] [CrossRef]
- Popescu, M.-C.; Froidevaux, J.; Navi, P.; Popescu, C.-M. Structural Modifications of Tilia Cordata Wood during Heat Treatment Investigated by FT-IR and 2D IR Correlation Spectroscopy. J. Mol. Struct. 2013, 1033, 176–186. [Google Scholar] [CrossRef]
- Agarwal, U.P.; Ralph, S.A.; Baez, C.; Reiner, R.S.; Verrill, S.P. Effect of Sample Moisture Content on XRD-Estimated Cellulose Crystallinity Index and Crystallite Size. Cellulose 2017, 24, 1971–1984. [Google Scholar] [CrossRef]
- Leonardon, M.; Altaner, C.M.; Vihermaa, L.; Jarvis, M.C. Wood Shrinkage: Influence of Anatomy, Cell Wall Architecture, Chemical Composition and Cambial Age. Eur. J. Wood Prod. 2010, 68, 87–94. [Google Scholar] [CrossRef]
- Bárcenas-Pazos, G.; Velázquez-Morales, P.; Dávalos-Sotelo, R. Effect of Lignin Content on Shrinkage of Four Mexican Woods. Holzforschung 2000, 54, 541–543. [Google Scholar] [CrossRef]
- Cogulet, A.; Blanchet, P.; Landry, V. Wood Degradation under UV Irradiation: A Lignin Characterization. J. Photochem. Photobiol. B Biol. 2016, 158, 184–191. [Google Scholar] [CrossRef]
- Abdel-Hamid, A.M.; Solbiati, J.O.; Cann, I.K.O. Chapter One-Insights into Lignin Degradation and Its Potential Industrial Applications. In Advances in Applied Microbiology; Sariaslani, S., Gadd, G.M., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 82, pp. 1–28. [Google Scholar]
- Zhu, Y.; Plaza, N.; Kojima, Y.; Yoshida, M.; Zhang, J.; Jellison, J.; Pingali, S.V.; O’Neill, H.; Goodell, B. Nanostructural Analysis of Enzymatic and Non-Enzymatic Brown Rot Fungal Deconstruction of the Lignocellulose Cell Wall. Front. Microbiol. 2020, 11, 1389. [Google Scholar] [CrossRef]
- Wagner, L.; Bader, T.K.; Eberhardsteiner, J.; de Borst, K. Fungal Degradation of Softwood Cell Walls: Enhanced Insight through Micromechanical Modeling. Int. Biodeter. Biodegr. 2014, 93, 223–234. [Google Scholar] [CrossRef]
- Flournoy, D.S.; Kirk, T.K.; Highley, T.L. Wood Decay by Brown-Rot Fungi: Changes in Pore Structure and Cell Wall Volume. Holzforschung 1991, 45, 383–388. [Google Scholar] [CrossRef]
- Thygesen, L.G.; Beck, G.; Nagy, N.E.; Alfredsen, G. Cell Wall Changes during Brown Rot Degradation of Furfurylated and Acetylated Wood. Int. Biodeterior. Biodegrad. 2021, 162, 105257. [Google Scholar] [CrossRef]
- High, K.E.; Penkman, K.E.H. A Review of Analytical Methods for Assessing Preservation in Waterlogged Archaeological Wood and Their Application in Practice. Herit. Sci. 2020, 8, 83. [Google Scholar] [CrossRef]
Wood Type | Mass Loss (%) | Shrinkage (%) | Surface Area (m2 g−1) | Total Pore Volume (cm3 g−1) | Cell Wall Density (g cm−3) | ρ (g cm−3) |
---|---|---|---|---|---|---|
CP | - | - | 0.36 ± 0.02 | 0.0007 | 1.51 ± 0.002 | 0.44 ± 0.02 |
BP | 38.5 ± 4.7 | 22.3 ± 4.6 | 0.70 ± 0.06 | 0.0015 | 1.54 ± 0.002 | 0.44 ± 0.03 |
ChP | 16.8 ± 1.4 | 25.1 ± 4.2 | 0.79 ± 0.03 | 0.0012 | 1.57 ± 0.002 | 0.65 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broda, M.; Popescu, C.-M.; Curling, S.F.; Timpu, D.I.; Ormondroyd, G.A. Effects of Biological and Chemical Degradation on the Properties of Scots Pine Wood—Part I: Chemical Composition and Microstructure of the Cell Wall. Materials 2022, 15, 2348. https://doi.org/10.3390/ma15072348
Broda M, Popescu C-M, Curling SF, Timpu DI, Ormondroyd GA. Effects of Biological and Chemical Degradation on the Properties of Scots Pine Wood—Part I: Chemical Composition and Microstructure of the Cell Wall. Materials. 2022; 15(7):2348. https://doi.org/10.3390/ma15072348
Chicago/Turabian StyleBroda, Magdalena, Carmen-Mihaela Popescu, Simon F. Curling, Daniel Ilie Timpu, and Graham A. Ormondroyd. 2022. "Effects of Biological and Chemical Degradation on the Properties of Scots Pine Wood—Part I: Chemical Composition and Microstructure of the Cell Wall" Materials 15, no. 7: 2348. https://doi.org/10.3390/ma15072348
APA StyleBroda, M., Popescu, C. -M., Curling, S. F., Timpu, D. I., & Ormondroyd, G. A. (2022). Effects of Biological and Chemical Degradation on the Properties of Scots Pine Wood—Part I: Chemical Composition and Microstructure of the Cell Wall. Materials, 15(7), 2348. https://doi.org/10.3390/ma15072348