Mechanical Properties and Tensile Model of Hemp-Fiber-Reinforced Poly(butylene adipate-co-terephthalate) Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Modification of Hemp Fibers
2.3. Preparation of PBAT/HF Composite
2.4. Characterization
2.4.1. Morphology
2.4.2. Density
2.4.3. Mechanical Properties
2.4.4. Thermal Stability
2.5. Tensile Model of Hemp-Fiber-Reinforced PBAT Composite
2.6. Biodegradability Test
3. Results and Discussion
3.1. Morphology
3.2. Density
3.3. Tensile Properties
3.4. Stretch Model
3.5. Thermogravimetric Analysis
3.6. Biodegradability Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ayre, D. Technology advancing polymers and polymer composites towards sustainability: A review. Curr. Opin. Green Sustain. Chem. 2018, 13, 108–112. [Google Scholar] [CrossRef]
- Pellis, A.; Malinconico, M.; Guarneri, A.; Gardossi, L. Renewable polymers and plastics: Performance beyond the green. New Biotechnol. 2021, 60, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.; An, Y.J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut. 2018, 240, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Farrelly, T.A.; Borrelle, S.B.; Fuller, S. The Strengths and Weaknesses of Pacific Islands Plastic Pollution Policy Frameworks. Sustainability 2021, 13, 1252. [Google Scholar] [CrossRef]
- Prata, J.C.; Silva, A.L.P.; Costa, J.P.d.; Mouneyrac, C.; Walker, T.R.; Duarte, A.C.; Rocha-Santos, T. Solutions and Integrated Strategies for the Control and Mitigation of Plastic and Microplastic Pollution. Int. J. Environ. Res. Public Health 2019, 16, 2411. [Google Scholar] [CrossRef] [Green Version]
- Xanthos, D.; Walker, T.R. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review. Mar. Pollut. Bull. 2017, 118, 17–26. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Koutra, E.; El-Sheekh, M.; Abdelkarim, E.A.; Zhu, D.; Sun, J. Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Sci. Total Environ. 2021, 771, 144719. [Google Scholar] [CrossRef]
- Oliveira, J.; Belchior, A.; da Silva, V.D.; Rotter, A.; Petrovski, Ž.; Almeida, P.L.; Lourenço, N.D.; Gaudêncio, S.P. Marine Environmental Plastic Pollution: Mitigation by Microorganism Degradation and Recycling Valorization. Front. Mar. Sci. 2020, 7, 1007. [Google Scholar] [CrossRef]
- Jian, J.; Zeng, X.; Huang, X. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. [Google Scholar] [CrossRef]
- Lai, L.; Wang, S.; Li, J.; Liu, P.; Wu, L.; Wu, H.; Xu, J.; Severtson, S.J.; Wang, W.J. Stiffening, strengthening, and toughening of biodegradable poly(butylene adipate-co-terephthalate) with a low nanoinclusion usage. Carbohydr. Polym. 2020, 247, 116687. [Google Scholar] [CrossRef]
- Moustafa, H.; Guizani, C.; Dupont, C.; Martin, V.; Jeguirim, M.; Dufresne, A. Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustain. Chem. Eng. 2017, 5, 1906–1916. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Pinheiro, I.F.; Mariano, M.; Cividanes, L.S.; Costa, J.C.M.; Nascimento, N.R.; Kimura, S.P.R.; Neto, J.C.M.; Lona, L.M.F. Environmentally friendly polymer composites based on PBAT reinforced with natural fibers from the amazon forest. Polym. Compos. 2019, 40, 3351–3360. [Google Scholar] [CrossRef]
- Da Silva, J.S.P.; da Silva, J.M.F.; Soares, B.G.; Livi, S.; Livi, S. Fully biodegradable composites based on poly(butylene adipate-co-terephthalate)/peach palm trees fiber. Compos. Part B: Eng. 2017, 129, 117–123. [Google Scholar] [CrossRef]
- Salentijn, E.M.J.; Zhang, Q.; Amaducci, S.; Yang, M.; Trindade, L.M. New developments in fiber hemp (Cannabis sativa L.) breeding. Ind. Crops Prod. 2015, 68, 32–41. [Google Scholar] [CrossRef]
- Garcia-Jaldon, C.; Dupeyre, D.; Vignon, M.R. Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass Bioenergy 1998, 14, 251–260. [Google Scholar] [CrossRef]
- Fike, J. Industrial Hemp: Renewed Opportunities for an Ancient Crop. Crit. Rev. Plant Sci. 2017, 35, 406–424. [Google Scholar] [CrossRef]
- Saradava, B.J.; Kathwadia, A.J.; Goraviyala, A.D.; Joshi, V.K. Mechanical characterization of hemp fiber reinforced polyester composites. Int. J. Sci. Dev. Res. 2016, 1, 754–762. [Google Scholar]
- Shahzad, A. Hemp fiber and its composites—A review. J. Compos. Mater. 2012, 46, 973–986. [Google Scholar] [CrossRef]
- Mohit, H.; Arul Mozhi Selvan, V. A comprehensive review on surface modification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymer based composites. Compos. Interfaces 2018, 25, 629–667. [Google Scholar] [CrossRef]
- Pereira, P.H.F.; de Freitas Rosa, M.; Cioffi, M.O.H.; de Carvalho Benini, K.C.C.; Milanese, A.C.; Voorwald, H.J.C.; Mulinari, D.R. Vegetal fibers in polymeric composites: A review. Polímeros 2015, 25, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Pandey, J.K.; Ahn, S.H.; Lee, C.S.; Mohanty, A.K.; Misra, M. Recent Advances in the Application of Natural Fiber Based Composites. Macromol. Mater. Eng. 2010, 295, 975–989. [Google Scholar] [CrossRef]
- Syduzzaman, M.; Al Faruque, M.A.; Bilisik, K.; Naebe, M. Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. Coatings 2020, 10, 973. [Google Scholar] [CrossRef]
- Cox, H.L. The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 1952, 3, 72. [Google Scholar] [CrossRef]
- Fukuda, H.; Chou, T.W. A probabilistic theory of the strength of short-fibre composites with variable fibre length and orientation. J. Mater. Sci. 1982, 17, 1003–1011. [Google Scholar] [CrossRef]
- Wu, S.; Wang, W.; Zhang, R.; Zhai, X.; Hou, H. Preparation and characterization of biodegradable trilayer films based on starch and polyester. Int. J. Biol. Macromol. 2021, 183, 1058–1066. [Google Scholar] [CrossRef]
Fiber Type | Diameter before Blending (mm) | Diameter after Blending (mm) | Compression Ratio |
---|---|---|---|
HF | 0.171 | 0.127 | 1.35 |
Si-HF | 0.177 | 0.125 | 1.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, D.; Zhang, L.; Jin, S.; Zhang, Y.; Xu, C.; Zhou, K.; Lu, W. Mechanical Properties and Tensile Model of Hemp-Fiber-Reinforced Poly(butylene adipate-co-terephthalate) Composite. Materials 2022, 15, 2445. https://doi.org/10.3390/ma15072445
Zeng D, Zhang L, Jin S, Zhang Y, Xu C, Zhou K, Lu W. Mechanical Properties and Tensile Model of Hemp-Fiber-Reinforced Poly(butylene adipate-co-terephthalate) Composite. Materials. 2022; 15(7):2445. https://doi.org/10.3390/ma15072445
Chicago/Turabian StyleZeng, Deyong, Liang Zhang, Shaojin Jin, Youyuan Zhang, Cuicui Xu, Kai Zhou, and Weihong Lu. 2022. "Mechanical Properties and Tensile Model of Hemp-Fiber-Reinforced Poly(butylene adipate-co-terephthalate) Composite" Materials 15, no. 7: 2445. https://doi.org/10.3390/ma15072445
APA StyleZeng, D., Zhang, L., Jin, S., Zhang, Y., Xu, C., Zhou, K., & Lu, W. (2022). Mechanical Properties and Tensile Model of Hemp-Fiber-Reinforced Poly(butylene adipate-co-terephthalate) Composite. Materials, 15(7), 2445. https://doi.org/10.3390/ma15072445