Human Gingival Fibroblast and Osteoblast Behavior on Groove-Milled Zirconia Implant Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates
2.2. Cell Culture
2.2.1. Fibroblast and Osteoblast Cells Viability and Proliferation
2.2.2. Fibroblasts and Osteoblasts Morphology
2.2.3. The Activity of Alkaline Phosphatase (ALP)
2.2.4. Quantification of Interleukin 1β (IL-1β) by ELISA Method
2.2.5. Quantification of Collagen I by ELISA Method
2.2.6. Quantification of Osteopontin by ELISA Method
2.2.7. Quantification of Interleukin 8 by ELISA Method
2.3. Statistical Evaluation
3. Results
3.1. Fibroblast and Osteoblast Viability and Proliferation
3.2. Fibroblast and Osteoblast Morphology
3.3. ALP Activity
3.4. Interleukin 1β
3.5. Collagen Type I
3.6. Osteopontin
3.7. Interleukin 8
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bressan, E.; Ferroni, L.; Gardin, C.; Bellin, G.; Sbricoli, L.; Sivolella, S.; Brunello, G.; Schwartz-Arad, D.; Mijiritsky, E.; Penarrocha, M.; et al. Metal Nanoparticles Released from Dental Implant Surfaces: Potential Contribution to Chronic Inflammation and Peri-Implant Bone Loss. Materials 2019, 12, 2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rokaya, D.; Srimaneepong, V.; Wisitrasameewon, W.; Humagain, M.; Thunyakitpisal, P. Peri-iplamtitis Update:Risk Indicators, Diagnosis and Treatment. Eur. J. Dent. 2020, 14, 672–682. [Google Scholar] [PubMed]
- Kormas, I.; Pedercini, C.; Pedercinia, A.; Raptopoulos, M.; Alassy, H.; Wolff, L. Peri-implant Diseases: Diagnosis, Clinical, Histological, Microbiological Characteristics and Treatment Strategies. A Narrative Review. Antibiotics 2020, 9, 835. [Google Scholar] [CrossRef]
- Mombelli, A.; Mulle, N.; Cionca, N. The epidemiology of periimplantitis. Clin. Oral Implant. Res. 2012, 23, 67–76. [Google Scholar] [CrossRef]
- Lee, C.-T.; Huang, Y.-W.; Zhu, L.; Weltman, R. Prevalences of peri-implantitis and peri-implant mucositis: Systematic review and meta-analysis. J. Dent. 2017, 62, 1–12. [Google Scholar] [CrossRef]
- Cruz, M.; Marques, J.; Peñarrieta-Juanito, G.; Costa, M.; Souza, J.; Magini, R.; Miranda, G.; Silva, F.; Caramês, J.; Mata, A. Bioactive-enhanced PEEK dental implant materials: Mechanical characterization and cellular responses. J. Oral Implantol. 2020, 47, 9–17. [Google Scholar] [CrossRef]
- Peñarrieta-Juanito, G.; Cruz, M.; Marques, J.; Souza, J.; Mata, A.; Caramês, J.; Miranda, G.; Costa, M.; Magini, R.; Henriques, B.; et al. A novel gradated zirconia implant material embedding bioactive ceramics: Physicochemical assessment and human osteoblast behavior. Materialia 2018, 1, 3–14. [Google Scholar] [CrossRef]
- Peñarrieta-Juanito, G.; Souza, J.; Cruz, M.; Marques, J.; Mata, A.; Caramês, J.; Miranda, G.; Costa, M.; Magini, R.; Henriques, B.; et al. Bioactivity of novel functionally structured titanium- ceramic composites in contact with human osteoblasts. J. Biomed. Mater. Res. Part A 2018, 106, 1923–1931. [Google Scholar] [CrossRef]
- Cruz, M.; Marques, J.; Fernandes, B.; Costa, M.; Miranda, G.; Mata, A.; Caramês, J.; Silva, F. Gingival fibroblasts behavior on bioactive zirconia and titanium dental implant surfaces produced by functionally graded technique. J. Appl. Oral Sci. 2020, 28, e20200100. [Google Scholar] [CrossRef]
- Sykaras, N.; Lacopino, A.M.; Marker, V.A.; Triplett, R.G.; Woody, R.D. Implant materials, designs, and surface topographies: Their effect on osseointegration. A literature review. Int. J. Oral Maxillofac. Implant. 2000, 15, 675–690. [Google Scholar]
- Hanawa, T. Zirconia versus titanium in dentistry: A review. Dent. Mater. J. 2020, 39, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Naveau, A.; Rignon-Bret, C.; Wulfam, C. Zirconia abutments in the anterior regio: A systematic review of mechanical and esthetic outcomes. J. Prosthet. Dent. 2019, 121, 775–781. [Google Scholar] [CrossRef]
- Farias, D.C.S.; Gonçalves, L.M.; Walter, R.; Chung, Y.; Blatz, M.B. Bond strengths of various resin cements to different ceramics. Braz. Oral Res. 2019, 33, 0095. [Google Scholar] [CrossRef]
- Sharma, A.; Waddell, J.N.; Li, K.C.; Sharma, L.; Prior, D.J.; Duncan, W.J. Is titanium-zirconium alloy a better alternative to pure titanium for oral implant? Composition, mechanical properties, and microsestructure analysis. Saudi. Dent. J. 2020, 33, 546–553. [Google Scholar] [CrossRef]
- Guehennec, L.L.; Soueidan, A.; Layrolle, P.; Amouriq, Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007, 23, 844–854. [Google Scholar] [CrossRef]
- Rupp, F.; Gittens, R.A.; Scheideler, L.; Marmur, A.; Boyan, B.D.; Schwartz, Z.; Geis-Gerstorfer, J. A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects. Acta Biomater. 2014, 10, 2894–2906. [Google Scholar] [CrossRef] [Green Version]
- Greiner, A.M.; Sales, A.; Chen, H.; Biela, S.A.; Kaufmann, D.; Kemkemer, R. Nano- and microstructured materials for in vitro studies of the physiology of vascular cells. Beilstein. J. Nanotechnol. 2016, 7, 1620–1641. [Google Scholar] [CrossRef] [Green Version]
- Nicolas-Silvente, A.I.; Velasco-Ortega, E.; Ortiz-Garcia, I.; Monsalve-Guil, L.; Gil, J.; Jimenez-Guerra, A. Influence of the Titanium Implant Surface Treatment on the Surface Roughness and Chemical Composition. Materials 2020, 13, 314. [Google Scholar] [CrossRef] [Green Version]
- Rabel, K.; Kohal, R.J.; Steinberg, T.; Tomakidi, P.; Rolauffs, B.; Adolfsson, E.; Palmero, P.; Fürderer, T.; Altmann, B. Controlling osteoblast morphology and proliferation via surface micro-topografies of implant biomaterials. Sci Rep. 2020, 10, 12810. [Google Scholar] [CrossRef]
- Zamparini, F.; Patri, C.; Generali, L.; Spinelli, A.; Taddei, P.; Gandolfi, M.G. Micro-nano surface characterization and bioactivity of a calcium phosphate-incorporated titanium implant surface. J. Funct. Biomater. 2021, 12, 3. [Google Scholar] [CrossRef]
- Shiozawa, M.; Takeuchi, H.; Akiba, Y.; Eguchi, K.; Akiba, N.; Aoyagi, Y.; Nagasawa, M.; Kuwae, H.; Izumi, K.; Uoshimaet, K.; et al. Biological reaction control using topography regulation of nanostructured titanium. Sci. Rep. 2020, 10, 2438. [Google Scholar] [CrossRef] [PubMed]
- Rompen, E.; Domken, O.; Degidi, M.; Pontes, A.E.F.; Piattelli, A. The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: A literature review. Clin. Oral Implant. Res. 2006, 17, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.-C.; Jia, F.; Gilbert, T.W.; Woo, S.L.-Y. Cell orientation determines the alignment of cell-produced collagenous matrix. J. Biomech. 2003, 36, 97–102. [Google Scholar] [CrossRef]
- Brunette, D.M. Spreading and orientation of epithelial cells on grooved substrata. Exp. Cell Res. 1986, 167, 203–217. [Google Scholar] [CrossRef]
- Chehroudi, B.; Gould, T.R.; Brunette, D.M. Effects of a grooved epoxy substratum on epithelial cell behavior in vitro and in vivo. J. Biomed Mater. Res. 1988, 22, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, B.F.; da Cruz, M.B.; Marques, J.F.; Madeira, S.; Carvalho, Ó.; Silva, F.S.; da Mata, A.D.S.P.; Caramês, J.M.M. Laser Nd: YAG patterning enhance human osteoblast behavior on zirconia implants. Lasers Med. Sci. 2020, 35, 2039–2048. [Google Scholar] [CrossRef]
- Andreiotelli, M.; Wenz, H.J.; Kohal, R.-J. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin. Oral Implant. Res. 2009, 20, 32–47. [Google Scholar] [CrossRef]
- Assal, P.A. The osseointegration of zirconia dental implants. Schweiz Monatsschr. Zahnmed. 2013, 123, 644–654. [Google Scholar] [PubMed]
- Parmigiani-Izquierdo, J.M.; Cabaña-Muñoz, M.E.; Merino, J.J.; Sánchez-Pérez, A. Zirconia implants and peek restorations for the replacement of upper molars. Int. J. Implant. Dent. 2017, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Sivaraman, K.; Chopra, A.; Narayan, A.I.; Balakrishnan, D. Is zirconia a viable alternative to titanium for oral implant? A critical review. J. Prosthodont. Res. 2018, 62, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, F.H.; Galárraga-Vinueza, M.E.; Magini, R.; Fredel, M.; Silva, F.; Souza, J.C.; Zhang, Y.; Henriques, B. Zirconia surface modifications for implant dentistry. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 1294–1305. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.W.; Wong, K.S.; Brunette, D.M. Microfabricated discontinuous-edge surface topographies influence osteoblast adhesion, migration, cytoskeletal organization, and proliferation and enhance matrix and mineral deposition in vitro. Calcif. Tissue Int. 2006, 78, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Hempel, U.; Hefti, T.; Kalbacova, M.; Wolf-Brandstetter, C.; Dieter, P.; Schlottig, F. Response of osteoblast-like SAOS-2 cells to zirconia ceramics with different surface topographies. Clin. Oral Implant. Res. 2010, 21, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Ketabi, M.; Deporter, D. The effects of laser microgrooves on hard and soft tissue attachment to implant collar surfaces: A literature review and interpretation. Int. J. Periodontics Restor. Dent. 2013, 33, e145–e152. [Google Scholar] [CrossRef] [PubMed]
- Aboushelib, M.N.; Osman, E.; Jansen, I.; Everts, V.; Feilzer, A.J. Influence of a nanoporous zirconia implant surface of on cell viability of human osteoblasts. J. Prosthodont. 2013, 22, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Lu, Q.; Yin, J.; Hu, J.; Wang, Z. Alignment of osteoblast-like cells and cell-produced collagen matrix induced by nanogrooves. Tissue Eng. 2005, 11, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Pereira, D.; Wang, Q.; Barata, D.B.; Truckenmüller, R.; Li, Z.; Xu, X.; Habibovic, P. Controlling growth and Osteogenic differentiation of osteoblasts on microgrooved polystyrene surfaces. PLoS ONE 2016, 11, e0161466. [Google Scholar]
- Holthaus, M.G.; Stolle, J.; Treccani, L.; Rezwan, K. Orientation of human osteoblasts on hydroxyapatite-based microchannels. Acta Biomater. 2012, 8, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, D.; Sjostrom, T.; Wilkinson, A.; Smith, C.-A.; Oreffo, R.O.C.; Dalby, M.J.; Su, B. Embossing of micropatterned ceramics and their cellular response. J. Biomed Mater. Res. A. 2013, 101, 3247–3255. [Google Scholar] [CrossRef]
- Yin, L.; Nakanishi, Y.; Alao, A.-R.; Song, X.-F.; Abduo, J.; Zhang, Y. A review of engineered zirconia surfaces in biomedical applications. Procedia CIRP 2017, 65, 284–290. [Google Scholar] [CrossRef]
- Rupp, F.; Liang, L.; Geis-Gerstorfer, J.; Scheideler, L.; Huttig, F. Surface characteristics of dental implants: A review. Dent. Mater. 2018, 34, 40–57. [Google Scholar] [CrossRef] [PubMed]
- Barbeck, M.; Schroder, M.-L.; Alkildani, S.; Jung, O.; Unger, R.E. Exploring the biomaterial-induced secretome: Physical Bone substitute characteristics influence the cytokine expression of Macrophages. Int. J. Mol. Sci. 2021, 22, 4442. [Google Scholar] [CrossRef] [PubMed]
- Yeniyol, S.; Ricci, J.L. Alkaline phosphatase levels of murine pre-osteoblastic cells on anodized and annealed titanium surfaces. Eur. Oral Res. 2018, 52, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Miyahara, K.; Watamoto, T.; Uto, Y.; Sawase, T. Effect of Microscopic Grooves on Bone Formation and Osteoblastic Diferentiation. Implant Dent. 2015, 24, 370–376. [Google Scholar] [PubMed] [Green Version]
- Khandaker, M.; Riahinezhad, S.; Sultana, F.; Vaughan, M.B.; Knight, J.; Morris, T.L. Peen treatment on a titanium implant: Effect of roughness, osteoblast cell functions, and bondingwith bone cement. Int. J. Nanomed. 2016, 11, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, M.N.; Rezaei, N.M.; Hasegawa, M.; Ishijima, M.; Nakhaei, K.; Okubo, T.; Taniyama, T.; Ghassemi, A.; Tahsili, T.; Park, W.; et al. Biological and osseointegration capabilities of hierarchically(meso-/micro-/nano-scale) roughened zirconia. Int. J. Nanomed. 2018, 13, 3381–3395. [Google Scholar] [CrossRef] [Green Version]
- Iglhaut, G.; Salomon, S.; Fretwurst, T.; Thomas, P.; Endres, J.; Kessler, S.; Summer, B. Cross-sectional evaluation of clinical and immunological parameters at partially microgrooved vs machined abutments in humans. Int. J. Implant. Dent. 2021, 7, 46. [Google Scholar] [CrossRef]
- Vinci, R.; Teté, G.; Lucchetti, F.R.; Capparé, P.; Gherlone, E.F. Implant survival rate in calvarial bone grafts: A retrospective clinical study with 10 year follow-up. Clin. Implant. Dent. Relat. Res. 2019, 21, 662–668. [Google Scholar] [CrossRef]
- Rosso, M.; Blsai, G.; Gherlone, E.; Rosso, R. Effect of Granulocyte-Macrophage Colony-Stimulating Factor on Prevention of Mucositis in Head and Neck Cancer Patients Treated with Chemo-Radiotherapy. J. Chemother. 1997, 9, 382–385. [Google Scholar] [CrossRef]
- D’Orto, B.; Tetè, G.; Polizzi, E. Osseointegrated dental implants supporting fixed prostheses in patients affected by Sjögren’s Sindrome: A narrative review. J. Biol. Regul. Homeost. Agents. 2020, 34 (Suppl. S3), 91–93. [Google Scholar]
Chemical Compounds | Y2O3 | HfO2 | Al2O3 | SiO2 | Fe2O3 | Na2O |
---|---|---|---|---|---|---|
Weight percentage (wt%) | 5.2 ± 0.5 | <5.0 | 0.1~0.4 | ≤0.02 | ≤0.01 | ≤0.04 |
Sample Group | Width (μm) | Depth (μm) |
---|---|---|
A | 126.93 ± 3.76 | 12.26 ± 1.46 |
B | 47.83 ± 2.05 | 10.42 ± 1.76 |
C | 67.06 ± 2.04 | 8.41 ± 1.51 |
D | 72.32 ± 2.77 | 17.07 ± 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Cruz, M.B.; Marques, J.F.; Silva, N.; Madeira, S.; Carvalho, Ó.; Silva, F.S.; Caramês, J.; Mata, A. Human Gingival Fibroblast and Osteoblast Behavior on Groove-Milled Zirconia Implant Surfaces. Materials 2022, 15, 2481. https://doi.org/10.3390/ma15072481
da Cruz MB, Marques JF, Silva N, Madeira S, Carvalho Ó, Silva FS, Caramês J, Mata A. Human Gingival Fibroblast and Osteoblast Behavior on Groove-Milled Zirconia Implant Surfaces. Materials. 2022; 15(7):2481. https://doi.org/10.3390/ma15072481
Chicago/Turabian Styleda Cruz, Mariana Brito, Joana Faria Marques, Neusa Silva, Sara Madeira, Óscar Carvalho, Filipe Samuel Silva, João Caramês, and António Mata. 2022. "Human Gingival Fibroblast and Osteoblast Behavior on Groove-Milled Zirconia Implant Surfaces" Materials 15, no. 7: 2481. https://doi.org/10.3390/ma15072481
APA Styleda Cruz, M. B., Marques, J. F., Silva, N., Madeira, S., Carvalho, Ó., Silva, F. S., Caramês, J., & Mata, A. (2022). Human Gingival Fibroblast and Osteoblast Behavior on Groove-Milled Zirconia Implant Surfaces. Materials, 15(7), 2481. https://doi.org/10.3390/ma15072481