In Vitro Studies for Investigating Creep of Intervertebral Discs under Axial Compression: A Review of Testing Environment and Results
Abstract
:1. Introduction
2. Mathematical Models of Creep
3. Factors That Can Influence the Mechanical Properties of IVDs
3.1. Species
3.1.1. Difference in Geometry
3.1.2. Difference in Glycosaminoglycan (GAG) and Water Content
3.1.3. Difference in Axial Compressive Mechanics
3.2. Specimen Harvesting and Storage
3.3. Testing Environment
Ref. | Number of Samples | Species | Spinal Level | Structure | Testing Environment | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Porcine | Bovine | Sheep | Canine | Murine | Monkey | Rabbit | Cervical | Thoracic | Lumbar | Coccygeal | IVD Only | VB–disc–VB | FSU | Room Temp. | Body Temp. | Air | Chamber | Saline Bath | Saline Soaked Gauze | ||
[64] | 12 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[65] | 54 | ☑ | ☑ | ☑ | |||||||||||||||||
[66] | 5 | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ||||||||||||||
[67] | 21 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[33] | 40 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[68] | 16 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[69] | 5 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[70] | 16 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[71] | 10 | ☑ | ☑ | ☑ | |||||||||||||||||
[72] | 7 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[73] | 12 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[74] | 43 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[75] | 16 | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ||||||||||||||
[76] | 16 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[37] | 60 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[77] | 24 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[78] | 218 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[79] | 11 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[80] | 126 | ☑ | ☑ | ☑ | |||||||||||||||||
[34] | 45 | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||
[81] | 10 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[82] | 36 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[83] | 48 | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ||||||||||||||
[84] | 60 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[85] | 30 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[86] | 57 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[32] | 32 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[87] | 5 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[35] | 48 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[88] | 42 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[89] | 1 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[90] | 32 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[91] | 26 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[92] | 6 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[93] | 24 | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ||||||||||||||
[94] | 15 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[95] | 15 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[96] | 24 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[97] | 12 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[98] | 18 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[99] | 3 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[100] | 21 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[46] | 44 | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ||||||||||||||
[8] | 60 | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||
[60] | 25 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[101] | 30 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[102] | 8 | ☑ | ☑ | ☑ | |||||||||||||||||
[103] | 24 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[104] | 54 | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ||||||||||||||
[105] | 12 | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ||||||||||||||
[106] | 36 | ☑ | ☑ | ☑ | ☑ | ||||||||||||||||
[107] | 48 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[108] | 24 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[109] | 18 | ☑ | ☑ | ☑ | ☑ | ☑ | ☑ | ||||||||||||||
[110] | 6 | ☑ | ☑ | ☑ | ☑ | ☑ | |||||||||||||||
[111] | 9 | ☑ | ☑ | ☑ | ☑ | ☑ |
3.4. Preload, Load Magnitudes and Duration
3.4.1. Preload
3.4.2. Load Magnitude and Duration
4. Selection of Loading Regime during Creep
4.1. Static Load
4.2. Quasi-Static Load
4.3. Dynamic Load
5. Techniques for Deformation and Intradiscal Pressure Assessment
5.1. Measurements of Deformation
5.2. Measurements of Intradiscal Pressure
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Newell, N.; Tapia, D.R.; Rahman, T.; Lim, S.; O’Connell, G.D.; Holsgrove, T.P. Influence of testing environment and loading rate on intervertebral disc compressive mechanics: An assessment of repeatability at three different laboratories. JOR Spine 2020, 3, e21110. [Google Scholar] [CrossRef] [PubMed]
- Wilke, H.-J.; Wenger, K.; Claes, L. Testing criteria for spinal implants: Recommendations for the standardization of in vitro stability testing of spinal implants. Eur. Spine J. 1998, 7, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panjabi, M.M.; Abumi, K.; Duranceau, J.; Crisco, J.J. Biomechanical Evaluation of Spinal Fixation Devices. Spine 1988, 13, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Bezci, S.; Nandy, A.; O’Connell, G.D. Effect of Hydration on Healthy Intervertebral Disk Mechanical Stiffness. J. Biomech. Eng. 2015, 137, 101007. [Google Scholar] [CrossRef] [Green Version]
- Pflaster, D.S.; Krag, M.H.; Johnson, C.C.; Haugh, L.D.; Pope, M.H. Effect of Test Environment on Intervertebral Disc Hydration. Spine 1997, 22, 133–139. [Google Scholar] [CrossRef]
- Costi, J.J.; Hearn, T.C.; Fazzalari, N.L. The effect of hydration on the stiffness of intervertebral discs in an ovine model. Clin. Biomech. 2002, 17, 446–455. [Google Scholar] [CrossRef]
- Huber, G.; Morlock, M.M.; Ito, K. Consistent hydration of intervertebral discs during in vitro testing. Med. Eng. Phys. 2007, 29, 808–813. [Google Scholar] [CrossRef]
- Schmidt, H.; Shirazi-Adl, A.; Schilling, C.; Dreischarf, M. Preload substantially influences the intervertebral disc stiffness in loading–unloading cycles of compression. J. Biomech. 2016, 49, 1926–1932. [Google Scholar] [CrossRef]
- Cripton, P.A.; Bruehlmann, S.B.; Orr, T.E.; Oxland, T.R.; Nolte, L.-P. In vitro axial preload application during spine flexibility testing: Towards reduced apparatus-related artefacts. J. Biomech. 2000, 33, 1559–1568. [Google Scholar] [CrossRef]
- Twomey, L.; Taylor, J. Flexion Creep Deformation and Hysteresis in the Lumbar Vertebral Column. Spine 1982, 7, 116–122. [Google Scholar] [CrossRef]
- Koeller, W.; Funke, F.; Hartmann, F.; Copley, A.L.; Witte, S. Biomechanical behavior of human intervertebral discs subjected to log lasting axial loading. Biorheology 1984, 21, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Leatt, P.; Reilly, T.; Troup, J.G. Spinal loading during circuit weight-training and running. Br. J. Sports Med. 1986, 20, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollintine, P.; Tunen, M.V.; Luo, J.; Brown, M.D.; Dolan, P.; Adams, M.A. Time-dependent Compressive Deformation of the Ageing Spine: Relevance to Spinal Stenosis. Spine 2010, 35, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.; Hutton, W.C. The Effect of Posture on the Fluid Content of Lumbar Intervertebral Discs. Spine 1983, 8, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.A.; Dolan, P. Time-dependent changes in the lumbar spine’s resistance to bending. Clin. Biomech. 1996, 11, 194–200. [Google Scholar] [CrossRef]
- Brown, T.; Hansen, R.J.; Yorra, A.J. Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs: A preliminary report. J. Bone Jt. Surg. Am. 1957, 39-A, 1135–1164. [Google Scholar] [CrossRef]
- Burns, M.L.; Kaleps, I.; Kazarian, L.E. Analysis of compressive creep behavior of the vertebral unit subjected to a uniform axial loading using exact parametric solution equations of Kelvin-solid models—Part I. Human intervertebral joints. J. Biomech. 1984, 17, 113–130. [Google Scholar] [CrossRef]
- Hirsch, C. The Reaction of Intervertebral Discs to Compression Forces. J. Bone Jt. Surg. 1955, 37, 1188–1196. [Google Scholar] [CrossRef]
- Hirsch, C.; Nachemson, A. New observations on the mechanical behavior oflumbar discs. Acta Orthop. Scand. 1994, 23, 254–283. [Google Scholar] [CrossRef] [Green Version]
- Kazarian, L.E. Creep Characteristics of the Human Spinal Column. Orthop. Clin. N. Am. 1975, 6, 3–18. [Google Scholar] [CrossRef]
- Koeller, W.; Meier, W.; Hartmann, F. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs. Spine 1984, 9, 725–733. [Google Scholar] [CrossRef]
- Kulak, R.F.; Schultz, A.B.; Belytschko, T.; Galante, J. Biomechanical characteristics of vertebral motion segments and inter-vertebral disks. Orthop. Clin. N. Am. 1975, 6, 121–133. [Google Scholar] [CrossRef]
- Lin, H.; Lui, Y.K.; Ray, G.; Nikravesh, P. Systems identification for material properties of the intervertebral joint. J. Biomech. 1978, 11, 1–14. [Google Scholar] [CrossRef]
- Lin, L.-C.; Hedman, T.P.; Wang, S.-J.; Huoh, M.; Chuang, S.-Y. The Analysis of Axisymmetric Viscoelasticity, Time-Dependent Recovery, and Hydration in Rat Tail Intervertebral Discs by Radial Compression Test. J. Appl. Biomech. 2009, 25, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markolf, K.L. Deformation of the thoracolumbar intervertebral joints in response to external loads: A biomechanical study using autopsy material. J. Bone Jt. Surg. 1972, 54, 511–533. [Google Scholar] [CrossRef]
- Virgin, W.J. Experimental investigations into the physical properties of the intervertebral disc. J. Bone Jt. Surg. Br. 1951, 33, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Reitmaier, S.; Graichen, F.; Shirazi-Adl, A. Review of the fluid flow within intervertebral discs—How could in vitro measurements replicate in vivo? J. Biomech. 2016, 49, 3133–3146. [Google Scholar] [CrossRef]
- Newell, N.; Little, J.P.; Christou, A.; Adams, M.A.; Adam, C.J.; Masouros, S.D. Biomechanics of the Human Intervertebral Disc: A Review of Testing Techniques and Results. J. Mech. Behav. Biomed. Mater. 2017, 69, 420–434. [Google Scholar] [CrossRef]
- Berberan-Santos, M.N.; Bodunov, E.N.; Valeur, B. Mathematical functions for the analysis of luminescence decays with un-derlying distributions. Kohlrausch decay function (stretched exponential). Chem. Phys. 2005, 315, 171–182. [Google Scholar] [CrossRef]
- Van der Veen, A.J.; Bisschop, A.; Mullender, M.G.; van Dieën, J.H. Modelling creep behaviour of the human intervertebral disc. J. Biomech. 2013, 46, 2101–2103. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, G.D.; Vresilovic, E.J.; Elliott, D.M. Comparison of animals used in disc research to human lumbar disc geometry. Spine 2007, 32, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.-W.; Wang, J.-L. Rheology of Intervertebral Disc. Spine 2010, 35, E743–E752. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, H.; Tsuji, H.; Hirano, N.; Ohshirna, H.; Terahata, N. Biorheological responses of the intact and nucleotomized in-tervertebral discs to compressive, tensile, and vibratory stresses. Clin. Biomech. 1993, 8, 250–254. [Google Scholar] [CrossRef]
- Beckstein, J.C.; Sen, S.; Schaer, T.P.; Vresilovic, E.J.; Elliott, D.M. Comparison of animal discs used in disc research to human lumbar disc: Axial compression mechanics and glycosaminoglycan content. Spine 2008, 33, E166–E173. [Google Scholar] [CrossRef]
- Gooyers, C.E.; McMillan, R.D.; Howarth, S.J.; Callaghan, J.P. The Impact of Posture and Prolonged Cyclic Compressive Loading on Vertebral Joint Mechanics. Spine 2012, 37, E1023–E1029. [Google Scholar] [CrossRef] [PubMed]
- Iatridis, J.C.; Laible, J.P.; Krag, M.H. Influence of Fixed Charge Density Magnitude and Distribution on the Intervertebral Disc: Applications of a Poroelastic and Chemical Electric (PEACE) Model. J. Biomech. Eng. 2003, 125, 12–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boxberger, J.I.; Sen, S.; Yerramalli, C.S.; Elliott, D.M. Nucleus pulposus glycosaminoglycan content is correlated with axial mechanics in rat lumbar motion segments. J. Orthop. Res. 2006, 24, 1906–1915. [Google Scholar] [CrossRef]
- Johannessen, W.; Elliott, D.M. Effects of degeneration on the biphasic material properties of human nucleus pulposus in con-fined compression. Spine 2005, 30, E724–E729. [Google Scholar] [CrossRef]
- Demers, C.N.; Antoniou, J.; Mwale, F. Value and Limitations of Using the Bovine Tail as a Model for the Human Lumbar Spine. Spine 2004, 29, 2793–2799. [Google Scholar] [CrossRef]
- Antoniou, J.; Steffen, T.; Nelson, F.; Winterbottom, N.; Hollander, A.P.; Poole, R.A.; Aebi, M.; Alini, M. The human lumbar intervertebral disc: Evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J. Clin. Investig. 1996, 98, 996–1003. [Google Scholar] [CrossRef]
- Urban, J.P.; McMullin, J.F. Swelling pressure of the intervertebral disc: Influence of proteoglycan and collagen contents. Biorheology 1985, 22, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Yates, J.P.; Giangregorio, L.; McGill, S.M. The Influence of Intervertebral Disc Shape on the Pathway of Posterior/Posterolateral Partial Herniation. Spine 2010, 35, 734–739. [Google Scholar] [CrossRef]
- Van Heeswijk, V.M.; Thambyah, A.; Robertson, P.A.; Broom, N.D. Posterolateral disc prolapse in flexion initiated by lateral inner annular failure: An investigation of the herniation pathway. Spine 2017, 42, 1604–1613. [Google Scholar] [CrossRef]
- Alini, M.; Eisenstein, S.M.; Ito, K.; Little, C.; Kettler, A.A.; Masuda, K.; Melrose, J.; Ralphs, J.; Stokes, I.; Wilke, H.J. Are animal models useful for studying human disc disorders/degeneration? Eur. Spine J. 2007, 17, 2–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reitmaier, S.; Schmidt, H.; Ihler, R.; Kocak, T.; Graf, N.; Ignatius, A.; Wilke, H.-J. Preliminary Investigations on Intradiscal Pressures during Daily Activities: An In Vivo Study Using the Merino Sheep. PLoS ONE 2013, 8, e69610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, H.; Schilling, C.; Reyna, A.L.P.; Shirazi-Adl, A.; Dreischarf, M. Fluid-flow dependent response of intervertebral discs under cyclic loading: On the role of specimen preparation and preconditioning. J. Biomech. 2016, 49, 846–856. [Google Scholar] [CrossRef] [PubMed]
- Oravec, D.; Kim, W.; Flynn, M.J.; Yeni, Y.N. The relationship of whole human vertebral body creep to geometric, microstructural, and material properties. J. Biomech. 2018, 73, 92–98. [Google Scholar] [CrossRef]
- McMillan, D.W.; Garbutt, G.; Adams, M.A. Effect of sustained loading on the water content of intervertebral discs: Implications for disc metabolism. Ann. Rheum. Dis. 1996, 55, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Heuer, F.; Schmidt, H.; Klezl, Z.; Claes, L.; Wilke, H.-J. Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J. Biomech. 2007, 40, 271–280. [Google Scholar] [CrossRef]
- Dhillon, N.; Bass, E.C.; Lotz, J.C. Effect of Frozen Storage on the Creep Behavior of Human Intervertebral Discs. Spine 2001, 26, 883–888. [Google Scholar] [CrossRef]
- Panjabi, M.M.; Krag, M.; Summers, D.; Videman, T. Biomechanical time-tolerance of fresh cadaveric human spine specimens. J. Orthop. Res. 1985, 3, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Smeathers, J.E.; Joanes, D.N. Dynamic compressive properties of human lumbar intervertebral joints: A comparison between fresh and thawed specimens. J. Biomech. 1988, 21, 425–433. [Google Scholar] [CrossRef]
- Galante, J.O. Tensile properties of the human lumbar annulus fibrosus. Acta Orthop. Scand. Suppl. 1967, 100, 1–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.S.; Uppuganti, S. Cumulative multiple freeze-thaw cycles and testing does not affect subsequent within-day variation in intervertebral flexibility of human cadaveric lumbosacral spine. Spine 2012, 37, E1238–E1242. [Google Scholar] [CrossRef]
- Callaghan, J.P.; McGill, S.M. Frozen storage increases the ultimate compressive load of porcine vertebrae. J. Orthop. Res. 1995, 13, 809–812. [Google Scholar] [CrossRef]
- Sunni, N.; Askin, G.N.; Labrom, R.D.; Izatt, M.T.; Pearcy, M.J.; Adam, C.J. The effect of repeated loading and freeze-thaw cycling on immature bovine thoracic motion segment stiffness. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2014, 228, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, G.D.; Jacobs, N.T.; Sen, S.; Vresilovic, E.J.; Elliott, D.M. Axial creep loading and unloaded recovery of the human intervertebral disc and the effect of degeneration. J. Mech. Behav. Biomed. Mater. 2011, 4, 933–942. [Google Scholar] [CrossRef] [Green Version]
- Paul, C.P.L.; Schoorl, T.; Zuiderbaan, H.A.; ZandiehDoulabi, B.; van der Veen, A.J.; van de Ven, P.M.; Smit, T.H.; van Royen, B.J.; Helder, M.N.; Mullender, M.G. Dynamic and Static Overloading Induce Early Degenerative Processes in Caprine Lumbar Intervertebral Discs. PLoS ONE 2013, 8, e62411. [Google Scholar] [CrossRef] [Green Version]
- Paul, C.P.L.; Zuiderbaan, H.A.; ZandiehDoulabi, B.; van der Veen, A.J.; van de Ven, P.M.; Smit, T.H.; Helder, M.N.; van Royen, B.J.; Mullender, M.G. Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbar intervertebral discs in ex vivo culture. PLoS ONE 2012, 7, e33147. [Google Scholar] [CrossRef] [Green Version]
- Vergroesen, P.; van der Veen, A.; Emanuel, K.S.; van Dieën, J.V.; Smit, T.H. The poro-elastic behaviour of the intervertebral disc: A new perspective on diurnal fluid flow. J. Biomech. 2016, 49, 857–863. [Google Scholar] [CrossRef]
- Ingelmark, B.E.; Ekholm, R. The compressibility of intervertebral disks: An experimental investigation on the intervertebral disk between the third and fourth lumbar vertebrae in man. Acta Soc. Med. Ups. 1952, 57, 202–217. [Google Scholar] [PubMed]
- Brinckmann, P.; Horst, M. The influence of vertebral body fracture, intradiscal injection, and partial discectomy on the radial bulge and height of human lumbar discs. Spine 1985, 10, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Koeller, W.; Muehlhaus, S.; Meier, W.; Hartmann, F. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression—Influence of age and degeneration. J. Biomech. 1986, 19, 807–816. [Google Scholar] [CrossRef]
- Wakano, K. Biomechanical analysis of canine intervertebral disks after chymopapain injection—Apreliminary report. Spine 1983, 8, 59–68. [Google Scholar] [CrossRef]
- Kaleps, I.; Kazarian, L.E. Analysis of compressive creep-behavior of the vertebral unit subjected to a uniform axial loading using exact parametric solution equations of kelvin-solid models. 2. Rhesus-monkey intervertebral joints. J. Biomech. 1984, 17, 131–136. [Google Scholar] [CrossRef]
- Smeathers, J.E. Some Time Dependent Properties of the Intervertebral Joint when under Compression. Eng. Med. 1984, 13, 83–87. [Google Scholar] [CrossRef]
- Ohshima, H.; Tsuji, H.; Hirano, N.; Ishihara, H.; Yamada, H. Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral-disk during compression load. Spine 1989, 14, 1234–1244. [Google Scholar] [CrossRef]
- Bass, E.C.; Duncan, N.A.; Hariharan, J.S.; Dusick, J.; Bueff, U.H.; Lotz, J.C. Frozen storage affects the compressive creep behavior of the porcine intervertebral disc. Spine 1997, 22, 2867–2876. [Google Scholar] [CrossRef]
- Martinez, J.B.; Oloyede, V.; Broom, N.D. Biomechanics of load-bearing of the intervertebral disc: An experimental and finite element model. Med. Eng. Phys. 1997, 19, 145–156. [Google Scholar] [CrossRef]
- Race, A.; Broom, N.D.; Robertson, P. Effect of loading rate and hydration on the mechanical properties of the disc. Spine 2000, 25, 662–669. [Google Scholar] [CrossRef]
- Kadoya, K.; Kotani, Y.; Abumi, K.; Takada, T.; Shimamoto, N.; Shikinami, Y.; Kadosawa, T.; Kaneda, K. Biomechanical and morphologic evaluation of a three-dimensional fabric sheep artificial intervertebral disc—In vitro and in vivo analysis. Spine 2001, 26, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Van Deursen, D.L.; Snijders, C.J.; Kingma, I.; van Dieën, J.H. In vitro torsion-induced stress distribution changes in porcine intervertebral discs. Spine 2001, 26, 2582–2586. [Google Scholar] [CrossRef] [PubMed]
- Van Dieën, J.H.; Kingma, I.; Meijer, R.; Hänsel, L.; Huiskes, R. Stress distribution changes in bovine vertebrae just below the endplate after sustained loading. Clin. Biomech. 2001, 16, S135–S142. [Google Scholar] [CrossRef] [Green Version]
- Palmer, E.I.; Lotz, J.C. The compressive creep properties of normal and degenerated murine intervertebral discs. J. Orthop. Res. 2004, 22, 164–169. [Google Scholar] [CrossRef]
- Sarver, J.J.; Elliott, D.M. Mechanical differences between lumbar and tail discs in the mouse. J. Orthop. Res. 2005, 23, 150–155. [Google Scholar] [CrossRef]
- Van der Veen, A.J.; Mullender, M.; Smit, T.H.; Kingma, I.; van Dieën, J.H. Flow-Related Mechanics of the Intervertebral Disc: The Validity of an In Vitro Model. Spine 2005, 30, E534–E539. [Google Scholar] [CrossRef] [Green Version]
- Johannessen, W.; Cloyd, J.M.; O’Connell, G.D.; Vresilovic, E.J.; Elliott, D.M. Trans-Endplate Nucleotomy Increases Deformation and Creep Response in Axial Loading. Ann. Biomed. Eng. 2006, 34, 687–696. [Google Scholar] [CrossRef]
- Parkinson, R.J.; Callaghan, J.P. Can periods of static loading be used to enhance the resistance of the spine to cumulative compression? J. Biomech. 2007, 40, 2944–2952. [Google Scholar] [CrossRef]
- MacLean, J.J.; Owen, J.P.; Iatridis, J.C. Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs. J. Biomech. 2007, 40, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Masuoka, K.; Michalek, A.J.; MacLean, J.J.; Stokes, I.A.F.; Iatridis, J.C. Different Effects of Static Versus Cyclic Compressive Loading on Rat Intervertebral Disc Height and Water Loss In Vitro. Spine 2007, 32, 1974–1979. [Google Scholar] [CrossRef] [Green Version]
- Korecki, C.L.; MacLean, J.J.; Iatridis, J.C. Dynamic Compression Effects on Intervertebral Disc Mechanics and Biology. Spine 2008, 33, 1403–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korecki, C.L.; Costi, J.J.; Iatridis, J.C. Needle Puncture Injury Affects Intervertebral Disc Mechanics and Biology in an Organ Culture Model. Spine 2008, 33, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Van der Veen, A.J.; Mullender, M.G.; Kingma, I.; van Dieen, J.H.; Smit, T.H. Contribution of vertebral bodies, endplates, and in-tervertebral discs to the compression creep of spinal motion segments. J. Biomech. 2008, 41, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Barbir, A.; Michalek, A.J.; Abbot, R.D.; Iatridis, J.C. Effects of enzymatic digestion on compressive properties of rat interver-tebral discs. J. Biomech. 2010, 43, 1067–1073. [Google Scholar] [CrossRef] [Green Version]
- Chuang, S.-Y.; Popovich, J.M.; Lin, L.-C.; Hedman, T.P. The Effects of Exogenous Crosslinking on Hydration and Fluid Flow in the Intervertebral Disc Subjected to Compressive Creep Loading and Unloading. Spine 2010, 35, E1362–E1366. [Google Scholar] [CrossRef]
- Chuang, S.-Y.; Lin, L.-C.; Hedman, T.P. The influence of exogenous cross-linking and compressive creep loading on intradiscal pressure. Biomech. Model. Mechanobiol. 2010, 9, 533–538. [Google Scholar] [CrossRef]
- Hartman, R.A.; Bell, K.M.; Debski, R.E.; Kang, J.D.; Sowa, G.A. Novel ex-vivo mechanobiological intervertebral disc culture system. J. Biomech. 2012, 45, 382–385. [Google Scholar] [CrossRef] [Green Version]
- Hwang, D.; Gabai, A.S.; Yu, M.; Yew, A.G.; Hsieh, A.H. Role of load history in intervertebral disc mechanics and intradiscal pressure generation. Biomech. Model. Mechanobiol. 2011, 11, 95–106. [Google Scholar] [CrossRef]
- Reiter, D.A.; Fathallah, F.A.; Farouki, R.T.; Walton, J.H. Noninvasive high resolution mechanical strain maps of the spine intervertebral disc using nonrigid registration of magnetic resonance images. J. Biomech. 2012, 45, 1534–1539. [Google Scholar] [CrossRef]
- Holguin, N.; Martin, J.T.; Elliott, D.M.; Judex, S. Low-intensity vibrations partially maintain intervertebral disc mechanics and spinal muscle area during deconditioning. Spine J. 2013, 13, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.T.; Gorth, D.J.; Beattie, E.E.; Harfe, B.D.; Smith, L.J.; Elliott, D.M. Needle puncture injury causes acute and long-term mechanical deficiency in a mouse model of intervertebral disc degeneration. J. Orthop. Res. 2013, 31, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, M.H.; Cohen, C.S.; Ducheyne, P.; Walsh, W.R. Restoring segmental biomechanics through nucleus augmentation: An in vitro study. J. Spinal Disord. Tech. 2013, 29, 461. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.F.; Hargens, A.; Cheng, K.K.; Lotz, J.C. Effect of microgravity on the biomechanical properties of lumbar and caudal intervertebral discs in mice. J. Biomech. 2014, 47, 2983–2988. [Google Scholar] [CrossRef] [PubMed]
- Pei, B.-Q.; Li, H.; Li, D.-Y.; Fan, Y.-B.; Wang, C.; Wu, S.-Q. Creep bulging deformation of intervertebral disc under axial compression. Bio-Medical Mater. Eng. 2014, 24, 191–198. [Google Scholar] [CrossRef]
- Vergroesen, P.-P.A.; Van Der Veen, A.J.; Van Royen, B.J.; Kingma, I.; Smit, T.H. Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness. Eur. Spine J. 2014, 23, 2359–2368. [Google Scholar] [CrossRef]
- Walter, B.A.; Likhitpanichkul, M.; Illien-Junger, S.; Roughley, P.J.; Hecht, A.C.; Iatridis, J.C. TNFα Transport Induced by Dynamic Loading Alters Biomechanics of Intact Intervertebral Discs. PLoS ONE 2015, 10, e0118358. [Google Scholar] [CrossRef] [Green Version]
- Ângelo, R.G.A.; Peixinho, N.; António, C.M.P.; Claro, J. Quasi-static and dynamic properties of the intervertebral disc: Ex-perimental study and model parameter determination for the porcine lumbar motion segment. Acta Bioeng. Biomech. 2015, 17, 59–66. [Google Scholar]
- Fields, A.J.; Berg-Johansen, B.; Metz, L.N.; Miller, S.; La, B.; Liebenberg, E.C.; Coughlin, D.G.; Graham, J.; Stanhope, K.L.; Havel, P.; et al. Alterations in intervertebral disc composition, matrix homeostasis and biomechanical behavior in the UCD-T2DM rat model of type 2 diabetes. J. Orthop. Res. 2015, 33, 738–746. [Google Scholar] [CrossRef] [Green Version]
- Choy, A.T.H.; Chan, B.P. A structurally and functionally biomimetic biphasic scaffold for intervertebral disc tissue engineering. PLoS ONE 2015, 10, e0131827. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.M.; Gooyers, C.E.; Karakolis, T.; Callaghan, J.P. The Impact of Posture on the Mechanical Properties of a Functional Spinal Unit During Cyclic Compressive Loading. J. Biomech. Eng. 2016, 138, 081007. [Google Scholar] [CrossRef]
- Russo, F.; Hartman, R.A.; Bell, K.; Vo, N.; Sowa, G.A.; Kang, J.D.; Vadalà, G.; Denaro, V. Biomechanical Evaluation of Transpedicular Nucleotomy with Intact Annulus Fibrosus. Spine 2017, 42, E193–E201. [Google Scholar] [CrossRef] [PubMed]
- Hedman, T.P.; Chen, W.-P.; Lin, L.-C.; Lin, H.-J.; Chuang, S.-Y. Effects of Collagen Crosslink Augmentation on Mechanism of Compressive Load Sharing in Intervertebral Discs. J. Med. Biol. Eng. 2017, 37, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikkhoo, M.; Wang, J.-L.; Parnianpour, M.; El-Rich, M.; Khalaf, K. Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading—Ex-vivo and In-Silico investigation. J. Biomech. 2018, 70, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Shirazi-Adl, A. Temporal and spatial variations of pressure within intervertebral disc nuclei. J. Mech. Behav. Biomed. Mater. 2018, 79, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Vergroesen, P.-P.A.; Emanuel, K.S.; Peeters, M.; Kingma, I.; Smit, T.H. Are axial intervertebral disc biomechanics determined by osmosis? J. Biomech. 2018, 70, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Cheng, X.; Luan, Y.; Liu, Q.; Zhang, C. Creep experimental study on the lumbar intervertebral disk under vibration compression load. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2019, 233, 858–867. [Google Scholar] [CrossRef]
- Mosley, G.E.; Hoy, R.; Nasser, P.; Kaseta, T.; Lai, A.; Evashwick-Rogler, T.W.; Lee, M.; Iatridis, J.C. Sex Differences in Rat Intervertebral Disc Structure and Function Following Annular Puncture Injury. Spine 2019, 44, 1257–1269. [Google Scholar] [CrossRef]
- Bezci, S.E.; Lim, S.; O’Connell, G.D. Nonlinear stress-dependent recovery behavior of the intervertebral disc. J. Mech. Behav. Biomed. Mater. 2020, 110, 103881. [Google Scholar] [CrossRef]
- Borem, R.; Walters, J.; Madeline, A.; Madeline, L.; Gill, S.; Easley, J.; Mercuri, J. Characterization of chondroitinase-induced lumbar intervertebral disc degenerationina sheep model intended for assessing biomaterials. J. Biomed. Mater. Res. Part A 2020, 109, 1232–1246. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, X.; Liu, Q.; Zhang, C.; Song, Y. The response surface method-genetic algorithm for identification of the lumbar intervertebral disc material parameters. Comput. Biol. Med. 2020, 124, 103920. [Google Scholar] [CrossRef]
- Treuheim, T.D.P.V.; Torre, O.M.; Ferreri, E.D.; Nasser, P.; Abbondandolo, A.; Caceres, M.D.; Lin, D.; Docheva, D.; Iatridis, J.C. Tenomodulin and chondromodulin-1 are both required to maintain biomechanical function and prevent intervertebral disc degeneration. Cartilage 2021, 13, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, R.J.; Durkin, J.L.; Callaghan, J.P. Estimating the Compressive Strength of the Porcine Cervical Spine: An Examination of the Utility of DXA. Spine 2005, 30, E492–E498. [Google Scholar] [CrossRef] [PubMed]
- Janevic, J.; Ashton-Miller, J.A.; Schultz, A.B. Large compressive preloads decrease lumbar motion segment flexibility. J. Orthop. Res. 1991, 9, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Costi, J.; Heinze, K.; Lawless, I.; Stanley, R.; Freeman, B. Do combined compression, flexion and axial rotation place degenerated discs at risk of posterolateral herniation? Measurement of 3D lumbar intervertebral disc internal strains during repetitive loading. Bone Jt. J. Orthop. Proc. Suppl. 2014, 96-B, 219. [Google Scholar]
- Wilke, H.; Neef, P.; Caimi, M.; Hoogland, T.; Claes, L.E. New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life. Spine 1999, 24, 755–762. [Google Scholar] [CrossRef]
- Brinckmann, P.; Grootenboer, H. Change of Disc Height, Radial Disc Bulge, and Intradiscal Pressure from Discectomy An in Vitro Investigation on Human Lumbar Discs. Spine 1991, 16, 641–646. [Google Scholar] [CrossRef]
- Callaghan, J.P.; Gunning, J.L.; McGill, S.M. The relationship between lumbar spine load and muscle activity during extensor exercises. Phys. Ther. 1998, 78, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Han, K.-S.; Rohlmann, A.; Zander, T.; Taylor, W.R. Lumbar spinal loads vary with body height and weight. Med. Eng. Phys. 2013, 35, 969–977. [Google Scholar] [CrossRef]
- Nachemson, A.L. Disc Pressure Measurements. Spine 1981, 6, 93–97. [Google Scholar] [CrossRef]
- Nachemson, A.; Morris, J.M. In Vivo Measurements of Intradiscal Pressure. J. Bone Jt. Surg. 1964, 46, 1077–1092. [Google Scholar] [CrossRef]
- Nachemson, A.; Morris, J. Lumbar discometry lumbar intradiscal pressure Page 37 of 55 measurements in vivo. Lancet 1963, 281, 1140–1142. [Google Scholar] [CrossRef]
- Sato, K.; Kikuchi, S.; Yonezawa, T. In Vivo Intradiscal Pressure Measurement in Healthy Individuals and in Patients with Ongoing Back Problems. Spine 1999, 24, 2468–2474. [Google Scholar] [CrossRef] [PubMed]
- Dreischarf, M.; Shirazi-Adl, A.; Arjmand, N.; Rohlmann, A.; Schmidt, H. Estimation of loads on human lumbar spine: A review of in vivo and computational model studies. J. Biomech. 2016, 49, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.J.; Ito, K.; Nolte, L.-P. Fluid flow and convective transport of solutes within the intervertebral disc. J. Biomech. 2004, 37, 213–221. [Google Scholar] [CrossRef]
- Bezci, S.E.; O’Connell, G.D. Osmotic Pressure Alters Time-dependent Recovery Behavior of the Intervertebral Disc. Spine 2018, 43, E334–E340. [Google Scholar] [CrossRef]
- Wilder, D.; Pope, M. Epidemiological and aetiological aspects of low back pain in vibration environments—An update. Clin. Biomech. 1996, 11, 61–73. [Google Scholar] [CrossRef]
- Kumar, A.; Varghese, M.; Mohan, D.; Mahajan, P.; Gulati, P.; Kale, S. Effect of whole-body vibration on the low back. A study of tractor-driving farmers in north India. Spine 1999, 24, 2506–2515. [Google Scholar] [CrossRef]
- Gullbrand, S.E.; Ashinsky, B.G.; Martin, J.T.; Pickup, S.; Smith, L.J.; Mauck, R.L.; Smith, H.E. Correlations between quantitative T 2 and T 1ρ MRI, mechanical properties and biochemical composition in a rabbit lumbar intervertebral disc degeneration model. J. Orthop. Res. 2016, 34, 1382–1388. [Google Scholar] [CrossRef]
- Emanuel, K.S.; van der Veen, A.J.; Rustenburg, C.M.; Smit, T.H.; Kingma, I. Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: A caprine in vitro study. J. Biomech. 2018, 70, 10–15. [Google Scholar] [CrossRef]
- Bashkuev, M.; Vergroesen, P.-P.; Dreischarf, M.; Schilling, C.; van der Veen, A.J.; Schmidt, H.; Kingma, I. Intradiscal pressure measurements: A challenge or a routine? J. Biomech. 2016, 49, 864–868. [Google Scholar] [CrossRef]
- Zehra, U.; Noel-Barker, N.; Marshall, J.; Adams, M.A.; Dolan, P. Associations Between Intervertebral Disc Degeneration Grading Schemes and Measures of Disc Function. J. Orthop. Res. 2019, 37, 1946–1955. [Google Scholar] [CrossRef]
- Bell, K.M.; Yan, Y.; Hartman, R.A.; Lee, J.Y. Influence of follower load application on moment-rotation parameters and intradiscal pressure in the cervical spine. J. Biomech. 2018, 76, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Derby, R.; Chen, Y.; Seo, K.S.; Kim, M.J. In Vitro Measurement of Pressure in Intervertebral Discs and Annulus Fi-brosus with and without Annular Tears during Discography. Spine 2004, 4, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Eck, J.C.; Humphreys, S.C.; Lim, T.-H.; Jeong, S.T.; Kim, J.G.; Hodges, S.D.; An, H.S. Biomechanical Study on the Effect of Cervical Spine Fusion on Adjacent-Level Intradiscal Pressure and Segmental Motion. Spine 2002, 27, 2431–2434. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-I.; Kim, S.-H.; Lim, D.-J.; Ha, S.-K.; Kim, S.-D. Biomechanical Changes in Disc Pressure and Facet Strain after Lumbar Spinal Arthroplasty with Charité™ in the Human Cadaveric Spine under Physiologic Compressive Follower Preload. Turk. Neurosurg. 2017, 27, 252–258. [Google Scholar]
- Mu, X.; Li, Z.; Yin, N.; Liang, B.; Ou, Y.; Wei, J. Biomechanical Effects of Fixation of Different Segments of Goat Lumbar Spine on Adjacent Segmental Motion and Intradiscal Pressure Change. Med. Sci. Monit. 2019, 25, 4885–4891. [Google Scholar] [CrossRef]
- Keller, T.S.; Spengler, D.M.; Hansson, T.H. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading. J. Orthop. Res. 1987, 5, 467–478. [Google Scholar] [CrossRef]
- Nerurkar, N.L.; Mauck, R.L.; Elliott, D.M. Modeling Inter-Lamellar Interactions in Angle-Ply Nanofibrous Biologic Laminates for Annulus Fibrosus Tissue Engineering. In Proceedings of the ASME 2010 Summer Bioengineering Conference, Parts A and B, Naples, FL, USA, 16–19 June 2010; Volume 10, p. 325. [Google Scholar] [CrossRef]
- Michalek, A.J.; Buckley, M.; Bonassar, L.J.; Cohen, I.; Iatridis, J.C. Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: Contributions of matrix fiber orientation and elastin content. J. Biomech. 2009, 42, 2279–2285. [Google Scholar] [CrossRef] [Green Version]
- Neidlinger-Wilke, C.; Galbusera, F.; Pratsinis, H.; Mavrogonatou, E.; Mietsch, A.; Kletsas, D.; Wilke, H.-J. Mechanical loading of the intervertebral disc: From the macroscopic to the cellular level. Eur. Spine J. 2013, 23, 333–343. [Google Scholar] [CrossRef]
- Doench, I.; Torres-Ramos, M.E.W.; Montembault, A.; De Oliveira, P.N.; Halimi, C.; Viguier, E.; Heux, L.; Siadous, R.; Thiré, R.M.S.M.; Osorio-Madrazo, A. Injectable and Gellable Chitosan Formulations Filled with Cellulose Nanofibers for Intervertebral Disc Tissue Engineering. Polymers 2018, 10, 1202. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.Y.; Xiang, D.D.; Chen, Y.R.; Cui, Y.Y.; Wang, S.; Liu, W.Q. An Artificial PVA-BC Composite That Mimics the Biomechanical Properties and Structure of a Natural Intervertebral Disc. Materials 2022, 15, 1481. [Google Scholar] [CrossRef] [PubMed]
- Tamo, A.K.; Doench, I.; Helguera, A.M.; Hoenders, D.; Walther, A.; Madrazo, A.O. Biodegradation of Crystalline Cellulose Nanofibers by Means of Enzyme Immobilized-Alginate Beads and Microparticles. Polymers 2020, 12, 1522. [Google Scholar] [CrossRef] [PubMed]
- Whatley, B.R.; Wen, X. Intervertebral disc (IVD): Structure, degeneration, repair and regeneration. Mater. Sci. Eng. C 2012, 32, 61–77. [Google Scholar] [CrossRef]
Structure of Specimens | Disc Height Loss (mm) | Stiffness (N/mm) | Maximum Pressure (MPa) | Ref. |
---|---|---|---|---|
Disc with Endplates | 1.08 | 700 | 1.1 | [46] |
Disc without Endplates | 0.75 | 700 | 0.67 | [8] |
Isolated Vertebral Body | 0.341 (±0.269) | 1620.75 | [47] |
Ref. | Preload | Load | Results | |||||
---|---|---|---|---|---|---|---|---|
Static | Cyclic | Static | Quasi-Static | Dynamic | Max. Pressure (MPa) | Max. Displacement (mm) or Strain (%) | Stiffness (N/mm) | |
[64] | ☑ | ☑ | 0.7 | |||||
[65] | ☑ | 0.528 | ||||||
[66] | ☑ | ☑ | 2.0 | |||||
[67] | ☑ | ☑ | ☑ | 3.5 | ||||
[33] | ☑ | 30% | ||||||
[68] | ☑ | 1.4 | ||||||
[69] | ☑ | 3 | 42% | |||||
[70] | ☑ | ☑ | 5.2 | 4000 | ||||
[71] | ☑ | 2.636 | ||||||
[72] | ☑ | 0.55 | ||||||
[73] | ☑ | |||||||
[74] | ☑ | ☑ | 0.44 | |||||
[75] | ☑ | ☑ | 0.2728 (tail); 0.1728 (lumbar) | 12.9 | ||||
[76] | ☑ | ☑ | 3.1 | 3.2 | ||||
[37] | ☑ | ☑ | 0.255 | 88.3 | ||||
[77] | ☑ | ☑ | 0.67 (0.27 creep) | 2200 | ||||
[78] | ☑ | ☑ | 3 | |||||
[79] | ☑ | ☑ | 0.99 (0.32 creep) | |||||
[80] | ☑ | ☑ | ☑ | 0.7 (static); 0.5 (cyclic) | ||||
[34] | ☑ | ☑ | 0.80 (porcine); 0.73 (baboon); 0.39 (sheep); 0.26 (rat lumbar); 0.11 (mouse lumbar) | 2491 (porcine); 1426 (baboon); 1432 ± 334; 78.1 (rat lumbar); 13.0 (mouse lumbar) | ||||
[81] | ☑ | ☑ | 0.53(per day) | |||||
[82] | ☑ | ☑ | 0.87 (per day) | |||||
[83] | ☑ | ☑ | 3.1 (VB-disc-VB); 2.6 (only disc) | |||||
[84] | ☑ | ☑ | 0.34 ± 0.02 (caudal); 0.21 ± 0.06 (lumbar) | |||||
[85] | ☑ | ☑ | 1.45 | |||||
[86] | ||||||||
[32] | ☑ | ☑ | ||||||
[87] | ☑ | ☑ | 1.0 | 82.7 ± 0.97 | ||||
[35] | ☑ | ☑ | ☑ | 3.6(dynamic); 2.2 (static) | 2960 ± 500 | |||
[88] | ☑ | ☑ | 0.51 | 43 ± 3% | 19 | |||
[89] | ☑ | ☑ | 25% | |||||
[90] | ☑ | ☑ | 0.0996 | 89 ± 11 | ||||
[91] | ☑ | ☑ | 0.4 | |||||
[92] | ☑ | ☑ | 2416 ± 304 | |||||
[93] | ☑ | ☑ | 0.0795 | |||||
[94] | 1.2 | |||||||
[95] | ☑ | ☑ | 1.1 | 0.4 | 1900 | |||
[96] | ☑ | ☑ | 1.1 | |||||
[97] | ☑ | ☑ | ☑ | 1.0 | 1200 | |||
[98] | ☑ | 60% | ||||||
[99] | ☑ | ☑ | 1.5 | |||||
[100] | ☑ | ☑ | 2.5 | 2900 | ||||
[46] | ☑ | ☑ | 1.15 | 5.7 (2.0 creep) | ||||
[8] | ☑ | ☑ | 1.08 (creep-with EP); 0.75 (creep-without EP) | 670 (EP); 690 (without EP) | ||||
[60] | ☑ | ☑ | 2.2 | |||||
[101] | ☑ | ☑ | 0.52 ± 0.14 | |||||
[102] | ☑ | ☑ | 0.46 (AF area) | |||||
[103] | ☑ | ☑ | 1.7 | |||||
[104] | ☑ | ☑ | 1.1 | |||||
[105] | ☑ | ☑ | 1.2 | 1900 | ||||
[106] | ☑ | 47% | ||||||
[107] | ☑ | ☑ | 0.6 | 85 | ||||
[108] | ☑ | ☑ | 7.2 | |||||
[109] | ☑ | ☑ | 0.5 (0.3 creep) | 1900 | ||||
[110] | ☑ | 25% | ||||||
[111] | ☑ | ☑ | 0.16 | 15 |
Manufacturer Name | Model | Species | Segment | Ref. |
---|---|---|---|---|
Gaeltec devices Ltd., Dunvegan, Isle of Skye, Scotland | CTN-4F | Human thoracic and lumbar | T8-T9, L5-S1 | [131] |
Precision Measurement Company, Ann Arbor, MI, USA | Model 060 | Human cervical | C3–C7 | [132] |
Merit System; Merit Medical Systems, Inc. South Jordan, UT | Not given | Porcine thoracolumbar | L4–L5 | [133] |
Millar Instruments, Houston, TX, USA | Model SPR-524 | Human cervical | C3–T1 | [134] |
Robert A. Denton, Inc. | Model 6376 | Human lumbar | L2–S2 | [135] |
Shimadzu Corporation | Pinhole pressure sensor | Goat lumbar | T12–S1 | [136] |
Samba Sensors, Gothenburg, Sweden | 360 HP | Bovine tail | C1–C3 | [104] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Xiang, D.; Wang, S.; Liu, W. In Vitro Studies for Investigating Creep of Intervertebral Discs under Axial Compression: A Review of Testing Environment and Results. Materials 2022, 15, 2500. https://doi.org/10.3390/ma15072500
Yang M, Xiang D, Wang S, Liu W. In Vitro Studies for Investigating Creep of Intervertebral Discs under Axial Compression: A Review of Testing Environment and Results. Materials. 2022; 15(7):2500. https://doi.org/10.3390/ma15072500
Chicago/Turabian StyleYang, Mengying, Dingding Xiang, Song Wang, and Weiqiang Liu. 2022. "In Vitro Studies for Investigating Creep of Intervertebral Discs under Axial Compression: A Review of Testing Environment and Results" Materials 15, no. 7: 2500. https://doi.org/10.3390/ma15072500
APA StyleYang, M., Xiang, D., Wang, S., & Liu, W. (2022). In Vitro Studies for Investigating Creep of Intervertebral Discs under Axial Compression: A Review of Testing Environment and Results. Materials, 15(7), 2500. https://doi.org/10.3390/ma15072500