Preparation of CSHW with Flue Gas Desulfurization Gypsum
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods
3. The Growth Mechanism of CSHW Crystal
4. Results and Discussion
4.1. The Effect of Reaction Temperature on the Morphology of CSHW
4.2. The Effect of Stirring Speed on the Morphology of CSHW
4.3. The Effect of Water–Material Ratio on the Morphology of CSHW
4.4. The Effect of Reaction Time on Morphology of CSHW
4.5. XRD Patterns under Different Preparation Conditions
4.6. Stabilization of CSHW
4.7. Effect of Glycerol Concentration on the Morphology of Whiskers
5. Conclusions
- (1)
- CSHW were prepared by hydro-thermal method using FGD gypsum as the primary material. The optimum preparing parameters were reaction temperature 160 °C, stirring speed 200~300 rpm, water–material ratio 11:1 and reaction time 1 h;
- (2)
- Octodecyl betaine had a significant effect on stabilizing CSHW. According to the statistical analysis, CSHW after stabilizing treatment by octodecyl betaine had a complete uniform morphology. Its average diameter was 0.26 μm and the average aspect ratio was as high as 208.2;
- (3)
- The diameter of whiskers prepared in glycerol solution reduced even lower than 0.1 μm, reaching nanometer scale. An increase in glycerol concentration led to a reduction in critical reaction temperature, in addition to the average diameter and the aspect ratio. The addition of glycerol may be the most effective way to obtain whisker of higher aspect ratio since it can significantly affect the activity of water;
- (4)
- The intensity of the XRD spectrum diffraction peak was related to the morphology of CSHW. With the increase in aspect ratio, the intensity of the (204) crystal plane in relation to that of the (200) crystal plane decreased gradually, confirming the preferential growth of the crystal along the C axis.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amani, A.O.; George, P. Gypsum crystallization and hydrochloric acid regeneration by reaction of calcium chloride solution with sulfuric acid. Hydrometallurgy 2009, 96, 95–102. [Google Scholar]
- Feldmann, T.; George, P. Effects of crystal habit modifiers on the morphology of calcium sulfate dihydrate grown in strong CaCl2-HCl solutions. J. Chem. Technol. Biotechnol. 2014, 89, 1523–1533. [Google Scholar] [CrossRef]
- Wang, S.Z.; Chen, D.Y.; Zhang, K.K. Preparation, characterization, and formation mechanism of calcium sulfate hemihydrate whiskers. J. Wuhan Univ. Technol. 2018, 33, 1407–1415. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, C.; Xue, C.; Dang, L.; Xu, S. In situ synthesis of hydrophobic calcium sulfate hemihydrate whiskers. Mater. Res. Express 2018, 5, 75004. [Google Scholar] [CrossRef]
- Cheng, X.; Dong, Q.; Li, Z.; Guo, X. High-temperature mechanical properties of calcium sulfate hemihydrate whiskers-reinforced high-alumina cement. Mag. Concr. Res. 2020, 72, 55–67. [Google Scholar] [CrossRef]
- Fan, T.; Wang, X.; Gao, Y.; Zhang, X.T. Investigating the interaction mechanism and effect of different calcium sulfate hemihydrate whiskers on performance of asphalt binder. Constr. Build. Mater. 2019, 224, 515–533. [Google Scholar] [CrossRef]
- Yuan, Z.T. Preparation of ultrafine calcium sulfate hemihydrate whiskers by hydrothermal synthesis. J. Northeast. Univ. 2008, 29, 573–576. [Google Scholar]
- Wang, X.; Jin, B.; Yang, L.; Zhu, X. Effect of CuCl2 on hydrothermal crystallization of calcium sulfate hemihydrate whiskers prepared from FGD gypsum. Cryst. Res. Technol. 2015, 50, 633–640. [Google Scholar] [CrossRef]
- Wang, S.J.; Chen, C.H.; Xu, X.C.; Li, Y.J. Amelioration of alkali soil using flue gas desulfurization byproducts: Productivity and environmental quality. Environ. Pollut. 2008, 151, 200. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Li, S.; Gao, Y.; Liu, C.; Qi, Y. Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials. J. Clean. Prod. 2020, 245, 118759. [Google Scholar] [CrossRef]
- Wu, S.; Wang, W.; Ren, C.; Yao, X.; Yao, Y.; Zhang, Q.; Li, Z. Calcination of calcium sulphoaluminate cement using flue gas desulfurization gypsum as whole calcium oxide source. Constr. Build. Mater. 2019, 228, 116676. [Google Scholar] [CrossRef]
- Koralegedara, N.H.; Pinto, P.X.; Dionysiou, D.D.; Al-Abed, S.R. Recent advances in flue gas desulfurization gypsum processes and applications. J. Environ. Manag. 2019, 251, 109572. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, H.; Li, L.; Ren, Q.; Yang, X.; Jiang, Z.; Zhang, Z. Utilization of low-quality desulfurized ash from semi-dry flue gas desulfurization by mixing with hemihydrate gypsum. Fuel 2019, 255, 115783. [Google Scholar] [CrossRef]
- Chen, R.; Wang, R.; Shi, L. Research on the use of sintering flue gas desulphurization gypsum as a cement retarder. Baosteel Tech. Res. 2010, 4, 13–15. [Google Scholar]
- Guo, X.L.; Shi, H.S. Influence of thermally treated flue gas desulfurization (FGD) gypsum on performance of the slag powder concrete. J. Wuhan Univ. Technol. 2013, 28, 1122–1127. [Google Scholar] [CrossRef]
- Qiao, X.C.; Chisun, P.; Lin, Z.S. Activation of rejected fly ash using flue gas desulphurization (FGD) sludge. J. Wuhan Univ. Technol. 2003, 18, 84–88. [Google Scholar]
- Zhao, Y.; Wang, S.; Li, Y.; Zhuo, Y.; Liu, J. Effects of straw layer and flue gas desulfurization gypsum treatments on soil salinity and sodicity in relation to sunflower yield. Geoderma 2019, 352, 13–21. [Google Scholar] [CrossRef]
- Leiva, C.; Arenas, C.G.; Vilches, L.F.; Vale, J.; Gimenez, A.; Ballesteros, J.C.; Fernández-Pereira, C. Use of FGD gypsum in fire resistant panels. Waste Manag. 2010, 30, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Tan, D.; Peng, T.; Liang, Y. Preparation of calcium sulfate hemihydrate whiskers by atmospheric acidification method from flue gas desulfurization gypsum. Procedia Environ. Sci. 2016, 31, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ran, L.; Wang, X.; Jin, B.; Zhang, J.; Li, S.; Yang, L. Structural characteristic and formation mechanism of hemihydrate calcium sulfate hemihydrate whiskers prepared using FGD gypsum. Particuology 2022, 62, 98–103. [Google Scholar] [CrossRef]
- Zhang, X.T.; Wang, X.; Jin, B. Crystal structure formation of hemihydrate calcium sulfate hemihydrate whiskers (HH-CSWs) prepared using FGD gypsum. Polyhedron 2019, 173, 114140. [Google Scholar] [CrossRef]
- Chen, X.M.; Wang, Q.Y.; Wu, Q.H.; Xie, X.L.; Tang, S.R.; Yang, G.M.; Luo, L.; Yuan, H.Y. Hydration reaction and microstructural characteristics of hemihydrate phosphogypsum with variable pH. Constr. Build. Mater. 2022, 316, 125891. [Google Scholar] [CrossRef]
- Chen, Y.; Yue, W.H.W.H.; Dong, R.L. Gypsum Building Materials; Chinese Building Materials Industry Press: Beijing, China, 2012; pp. 87–88. [Google Scholar]
- Wei, Z.J.; Ma, P.H. Whiskers growth mechanism in the solution system. J. Salt Lake Res. 1995, 4, 57–65. [Google Scholar]
- Gleason, C.L.; Rochelle, G.T. Nucleation and crystal growth of calcium sulfate hemihydrate. Ph.D. Thesis, University of Texas Austin, TX, USA, 1989. [Google Scholar]
- Azimi, G. Evaluating the potential of scaling due to calcium compounds in hydrometallurgical processes. Ph.D. Thesis, University of Toronto, Toronto, Canada, 2010. [Google Scholar]
- Mullin, J.W. Crystallization, 4th ed.; Butterworth Heinemann: Oxford, UK, 2015; pp. 189–190. [Google Scholar]
- Wang, P.; Lee, E.J.; Park, C.S.; Yoon, B.H.; Shin, D.S.; Kim, H.E.; Koh, Y.H.; Park, S.H. Calcium sulfate hemihydrate powders with a controlled morphology for use as bone cement. J. Am. Ceram. Soc. 2008, 91, 2039–2042. [Google Scholar] [CrossRef] [Green Version]
- Mi, Y.; Chen, D.Y.; Wang, S.Z. Utilization of phosphogypsum for the preparation of α-calcium sulfate hemihydrate in chloride-free solution under atmospheric pressure. J. Chem. Technol. Biotechnol. 2018, 93, 2371–2379. [Google Scholar] [CrossRef]
- Guan, B.; Jiang, G.; Fu, H.; Yang, L.; Wu, Z. Thermodynamic preparation window of alpha calcium sulfate hemihydrate from calcium sulfate dihydrate in non-electrolyte glycerol-water solution under mild conditions. Ind. Eng. Chem. Res. 2011, 50, 13561–13567. [Google Scholar] [CrossRef]
Composition (%) | SO3 | CaO | MgO | Fe2O3 | Al2O3 | N2O | K2O | H2O | Others |
---|---|---|---|---|---|---|---|---|---|
FGD | 44.36 | 31.36 | 0.56 | 0.18 | 0.36 | 0.05 | 0.13 | 18.65 | 2.53 |
Sample | A1-4 | B1-4 | C1-4 | D1-4 |
---|---|---|---|---|
Reaction temperature/°C | 120/140/160/180 | 140 | 140 | 140 |
Stirring speed/rpm | 200 | 100/200/300/400 | 100 | 100 |
Reaction time/h | 2.5 | 2.5 | 0.5/1/1.5/2.0 | 2.5 |
Water–material ratio | 7:1 | 7:1 | 7:1 | 5/7/9/11:1 |
Preparing Parameter | a | b | c | d |
---|---|---|---|---|
Temperature/°C | 120 | 140 | 180 | 160 |
Stirring speed/rpm | 400 | 100 | 400 | 200 |
Reaction time/h | 2.5 | 2.5 | 1.5 | 1 |
Water–material ratio | 11:1 | 7:1 | 5:1 | 11:1 |
Average aspect ratio | 5.3 | 15.6 | 22.4 | 195.6 |
Average diameter/um | 3.7 | 1.8 | 1.2 | 0.36 |
Stabilizing Treatment | Average Length (μm) | Average Diameter (μm) | Average Aspect Ratio |
---|---|---|---|
Before stabilizing | 14.68 | 2.46 | 6.02 |
After stabilizing | 96.57 | 0.26 | 208.2 |
Glycerol wt% | 0% | 20% | 40% | 60% | 80% | 90% |
---|---|---|---|---|---|---|
Average length (μm) | 49.3~60.8 | 47.0~62.1 | 58.3~74.7 | 52.6~56.0 | 43.9~46.2 | 26.8~32.0 |
Average diameter (nm) | 1200~1560 | 789~850 | 589~653 | 186~260 | 146~201 | 94~120 |
Average aspect ratio | 31.6~50.6 | 55.3~78.7 | 89.3~126.8 | 202.3~301.0 | 218.5~316.4 | 223.3~340.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Gao, J.; Wu, Y.; Wu, Q.; Luo, L. Preparation of CSHW with Flue Gas Desulfurization Gypsum. Materials 2022, 15, 2691. https://doi.org/10.3390/ma15072691
Chen X, Gao J, Wu Y, Wu Q, Luo L. Preparation of CSHW with Flue Gas Desulfurization Gypsum. Materials. 2022; 15(7):2691. https://doi.org/10.3390/ma15072691
Chicago/Turabian StyleChen, Xuemei, Jianming Gao, Ye Wu, Qihong Wu, and Li Luo. 2022. "Preparation of CSHW with Flue Gas Desulfurization Gypsum" Materials 15, no. 7: 2691. https://doi.org/10.3390/ma15072691
APA StyleChen, X., Gao, J., Wu, Y., Wu, Q., & Luo, L. (2022). Preparation of CSHW with Flue Gas Desulfurization Gypsum. Materials, 15(7), 2691. https://doi.org/10.3390/ma15072691