Effects of the Water/Cement Ratio on the Properties of 3-3 Type Cement-Based Piezoelectric Composites
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Rheological Behavior of the Cement Paste
3.2. Phase Analysis and Microstructure
3.3. Dielectric and Piezoelectric Properties
3.4. Electromechanical and Acoustic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Zhang, D.; Wu, K. Cement-Based 0-3 Piezoelectric Composites. J. Am. Ceram. Soc. 2004, 85, 305–313. [Google Scholar] [CrossRef]
- Xin, C.; Shifeng, H.; Jun, C.; Ronghua, X.; Futian, L.; Lingchao, L. Piezoelectric and dielectric properties of piezoelectric ceramic–sulphoaluminate cement composites. J. Eur. Ceram. Soc. 2005, 25, 3223–3228. [Google Scholar] [CrossRef]
- Dong, B.; Liu, Y.; Han, N.; Sun, H.; Xing, F.; Qin, D. Study on the microstructure of cement-based piezoelectric ceramic composites. Constr. Build. Mater. 2014, 72, 133–138. [Google Scholar] [CrossRef]
- Chaipanich, A. Dielectric and piezoelectric properties of PZT–cement composites. Curr. Appl. Phys. 2007, 7, 537–539. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, D.; Wang, X.; Li, Y.; Jiang, Q. Cement-based piezoelectric composite sensor designed for charactering the three-dimensional stress state in concrete. Smart Mater. Struct. 2020, 29, 085048. [Google Scholar] [CrossRef]
- Liu, W.; Yin, J.; Wang, J.; Dong, Y.; Cheng, Z.; Bai, P. Dielectric and piezoelectric behavior of PVDF-modified 3-3 type cement-based piezoelectric composites. Smart Mater. Struct. 2021, 30, 125021. [Google Scholar] [CrossRef]
- Abavisani, I.; Rezaifar, O.; Kheyroddin, A. Multifunctional Properties of Shape Memory Materials in Civil Engineering Applications: A State-of-the-Art Review. J. Build. Eng. 2021, 44, 102657. [Google Scholar] [CrossRef]
- Ye, X.W.; Su, Y.H.; Han, J.P. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review. Sci. World J. 2014, 2014, 652329. [Google Scholar] [CrossRef] [Green Version]
- La Mendola, L.; Oddo, M.C.; Papia, M.; Pappalardo, F.; Pennisi, A.; Bertagnoli, G.; Di Trapani, F.; Monaco, A.; Parisi, F.; Barile, S. Performance of two innovative stress sensors imbedded in mortar joints of new masonry elements. Constr. Build. Mater. 2021, 297, 123764. [Google Scholar] [CrossRef]
- Miao, H.; Li, F. Shear horizontal wave transducers for structural health monitoring and nondestructive testing: A review. Ultrasonics 2021, 114, 106355. [Google Scholar] [CrossRef]
- Giroto, P.C.; Viera, M.A.A.; Junior, P.O.; Alexandre, F.A.; Dotto, F.R.; Gotz, R.; Lopes, T.G.; Aguiar, P.R. Development of a Piezoelectric Transducer Coupling System for Structural Health Monitoring Applications. In Proceedings of the 2019 7th In-ternational Engineering, Sciences and Technology Conference (IESTEC) 2019, Panama City, Panama, 9–11 October 2019; pp. 538–543. [Google Scholar]
- Ding, W.; Xu, W.; Dong, Z.; Liu, Y.; Wang, Q.; Shiotani, T. Influence of hydration capacity for cement matrix on the piezoelectric properties and microstructure of cement-based piezoelectric ceramic composites. Mater. Charact. 2021, 179, 111390. [Google Scholar] [CrossRef]
- Potong, R.; Rianyoi, R.; Ngamjarurojana, A.; Yimnirun, R.; Guo, R.; Bhalla, A.S.; Chaipanich, A. Thermal expansion behaviors of 0–3 connectivity lead-free barium zirconate titanate-Portland cement composites. Ceram. Int. 2017, 43, S129–S135. [Google Scholar] [CrossRef]
- Sanches, A.; Teixeira, G.; Zaghete, M.; Longo, E.; Malmonge, J.; Silva, M.; Sakamoto, W. Influence of polymer insertion on the dielectric, piezoelectric and acoustic properties of 1-0-3 polyurethane/cement-based piezo composite. Mater. Res. Bull. 2019, 119, 110541. [Google Scholar] [CrossRef]
- Potong, R.; Rianyoi, R.; Chaipanich, A. Acoustic and Piezoelectric Properties of 0–3 Connectivity Environmental-Friendly Lead-Free BCTS–Portland Cement Composites. Phys. Solid State 2020, 62, 1892–1897. [Google Scholar] [CrossRef]
- Rianyoi, R.; Potong, R.; Ngamjarurojana, A.; Chaipanich, A. Mechanical, dielectric, ferroelectric and piezoelectric properties of 0–3 connectivity lead-free piezoelectric ceramic 0.94Bi0.5Na0.5TiO3–0.06BaTiO3/Portland cement composites. J. Mater. Sci. Mater. Electron. 2021, 32, 4695–4704. [Google Scholar] [CrossRef]
- Zhang, T.; Li, J.; Liu, W. Electromechanical impact analysis of 2–2 cement-based piezoelectric sensor considering resistor. J. Intell. Mater. Syst. Struct. 2020, 31, 1176–1192. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Zhang, W. Improved output voltage of 0–3 cementitious piezoelectric composites with basalt fibers. Ceram. Int. 2018, 45, 6577–6580. [Google Scholar] [CrossRef]
- Topolov, V.Y.; Bowen, C.R. Electromechanical Properties in Composites Based on Ferroelectrics: Electromechanical Properties in Composites Based on Ferroelectrics; Springer: London, UK, 2009. [Google Scholar]
- Li, Z.; Gong, H.; Zhang, Y. Fabrication and piezoelectricity of 0–3 cement based composite with nano-PZT powder. Curr. Appl. Phys. 2009, 9, 588–591. [Google Scholar] [CrossRef]
- Huang, S.; Li, X.; Liu, F.; Chang, J.; Xu, D.; Cheng, X. Effect of carbon black on properties of 0–3 piezoelectric ceramic/cement composites. Curr. Appl. Phys. 2009, 9, 1191–1194. [Google Scholar] [CrossRef]
- Gong, H.; Li, Z.; Zhang, Y.; Fan, R. Piezoelectric and dielectric behavior of 0-3 cement-based composites mixed with carbon black. J. Eur. Ceram. Soc. 2009, 29, 2013–2019. [Google Scholar] [CrossRef]
- Potong, R.; Rianyoi, R.; Ngamjarurojana, A.; Chaipanich, A. Influence of carbon nanotubes on the performance of bismuth sodium titanate-bismuth potassium titanate-barium titanate ceramic/cement composites. Ceram. Int. 2017, 43, S75–S78. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, S.; Kadlec, A.; Li, Z.; Wang, X. Properties of cement–sand-based piezoelectric composites with carbon nanotubes modification. Ceram. Int. 2016, 42, 15030–15034. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.; Cao, Y.; Wang, J.; Bai, P.; Xi, X.; Yang, J. Fabrication and properties of 3-3 type PZT-ordinary Portland cement composites. Constr. Build. Mater. 2021, 305, 124815. [Google Scholar] [CrossRef]
- Tawfik, A.; Eatah, A.; El-Salam, F.A. Dielectric and electromechanical properties of calcium-doped lead zirconate titanate. Mater. Sci. Eng. 1983, 60, 145–149. [Google Scholar] [CrossRef]
- Chaipanich, A.; Rianyoi, R.; Potong, R.; Jaitanong, N.; Chindaprasirt, P. Compressive Strength and Microstructure of 0–3 Lead Zirconate Titanate Ceramic-Portland Cement Composites. Ferroelectrics 2013, 457, 53–61. [Google Scholar] [CrossRef]
- Huang, S.; Chang, J.; Lu, L.; Liu, F.; Ye, Z.; Cheng, X. Preparation and polarization of 0–3 cement based piezoelectric composites. Mater. Res. Bull. 2006, 41, 291–297. [Google Scholar] [CrossRef]
- Jaitanong, N.; Vittayakorn, N.; Yimnirun, R.; Chaipanich, A. Ferroelectric Hysteresis Behavior of 0–3 PMNT-Cement Composites. Ferroelectrics 2010, 405, 105–110. [Google Scholar] [CrossRef]
Water-to-Cement Ratio | 0.3 | 0.5 | 0.7 | 0.9 | 1.1 |
---|---|---|---|---|---|
Kp/% | 26.32 | 27.23 | 30.02 | 34.57 | 36.93 |
Kt/% | 26.75 | 30.02 | 31.01 | 35.25 | 34.46 |
Z/MRayls | 7.19 | 7.13 | 7.13 | 6.98 | 7.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.-h.; Sun, H.-x.; Dong, Y.-g.; Cheng, Z.; Liu, W. Effects of the Water/Cement Ratio on the Properties of 3-3 Type Cement-Based Piezoelectric Composites. Materials 2022, 15, 2760. https://doi.org/10.3390/ma15082760
Wang J-h, Sun H-x, Dong Y-g, Cheng Z, Liu W. Effects of the Water/Cement Ratio on the Properties of 3-3 Type Cement-Based Piezoelectric Composites. Materials. 2022; 15(8):2760. https://doi.org/10.3390/ma15082760
Chicago/Turabian StyleWang, Jian-hong, Hao-xin Sun, Ying-ge Dong, Zhi Cheng, and Wei Liu. 2022. "Effects of the Water/Cement Ratio on the Properties of 3-3 Type Cement-Based Piezoelectric Composites" Materials 15, no. 8: 2760. https://doi.org/10.3390/ma15082760
APA StyleWang, J. -h., Sun, H. -x., Dong, Y. -g., Cheng, Z., & Liu, W. (2022). Effects of the Water/Cement Ratio on the Properties of 3-3 Type Cement-Based Piezoelectric Composites. Materials, 15(8), 2760. https://doi.org/10.3390/ma15082760