MXene Enhanced the Electromechanical Performance of a Nafion-Based Actuator
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. The Preparation of MXene
2.3. The Preparation of MXene–Nafion Composite Membranes
2.4. The Preparation of CNT Electrode
2.5. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Shahinpoor, M.; Kim, K.J. Ionic polymer–metal composites: I. Smart Mater. Struct. 2001, 10, 819–833. [Google Scholar] [CrossRef]
- Lee, J.H.; Nam, J.D.; Choi, H.; Kim, H.M.; Yong, S.T. Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator. Sens. Actuators A 2005, 118, 98–106. [Google Scholar] [CrossRef]
- Khawwaf, J.; Zheng, J.; Chai, R.; Lu, R.; Man, Z. Adaptive micro-tracking control for an underwater IPMC actuator using new hyperplane-based sliding mode. IEEE-ASME Trans. Mech. 2019, 24, 2108–2117. [Google Scholar] [CrossRef]
- Shahinpoor, M.; Kim, K.J. Ionic polymer–metal composites: IV. Industrial and medical applications. Smart Mater. Struct. 2005, 14, 197–214. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Y.; Liang, Y.; Ren, L.; Tian, W.; Ren, L. High-performance ionic-polymer–metal composite: Toward large-deformation fast-response artificial muscles. Adv. Funct. Mater. 2020, 30, 1908508. [Google Scholar] [CrossRef]
- Umrao, S.; Tabassian, R.; Kim, J.; Nguyen, V.H.; Zhou, Q.; Nam, S.; Oh, I.K. MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 2019, 4, eaaw7797. [Google Scholar] [CrossRef]
- Hu, Y.; Lian, H.; Zu, L.; Jiang, Y.; Hu, Z.; Li, Y.; Shen, S.; Cui, X.; Liu, Y. Durable electromechanical actuator based on graphene oxide with in situ reduced graphene oxide electrodes. J. Mater. Sci. 2016, 51, 1376–1381. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, S.; Liang, Q.; Tang, X.; Lian, H.; Li, C.; Wang, X.; Zhou, Z.; Gao, Y.; Zu, L.; et al. Electromechanical properties of Nafion/carbon nanotube composites enhanced by black phosphorus. Compos. Interfaces 2020, 28, 671–681. [Google Scholar] [CrossRef]
- Zu, L.; Li, Y.; Lian, H.; Hu, Y.; Chang, W.; Liu, B.; Liu, Y.; Ao, X.; Li, Q.; Cui, X. The Enhancement effect of mesoporous graphene on actuation of Nafion-based IPMC. Macromol. Mater. Eng. 2016, 301, 1076–1083. [Google Scholar] [CrossRef]
- Xia, Q.; Fu, J.; Mane, R.S.; Kim, K.H. High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Adv. 2017, 7, 11000–11011. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P.A.; Qin, S.; Han, M.; Yang, W.; Liu, J.; et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093. [Google Scholar]
- Ma, Z.; Kang, S.; Ma, J.; Shao, L.; Zhang, Y.; Liu, C.; Wei, A.; Xiang, X.; Wei, L.; Gu, J. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/Silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S.; Varma, R.S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances. Mater. Adv. 2021, 2, 2906–2917. [Google Scholar] [CrossRef]
- Huang, R.; Chen, X.; Dong, Y.; Zhang, X.; Wei, Y.; Yang, Z.; Li, W.; Guo, Y.; Liu, J.; Yang, Z.; et al. MXene composite nanofibers for cell culture and tissue engineering. ACS Appl. Bio Mater. 2020, 3, 2125–2131. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Shen, J.; Yang, C.; Wan, Y.; Tang, H.; Aljarb, A.A.; Chen, C.; Fu, J.-H.; Wei, X.; Huang, K.; et al. Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 2020, 6, eabb5367. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, M.; Yang, B.; Tan, J.; Ding, X. Highly compressible, thermally stable, light-weight and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 2020, 14, 10633–10647. [Google Scholar] [CrossRef]
- Tian, W.; VahidMohammadi, A.; Reid, M.S.; Wang, Z.; Ouyang, L.; Erlandsson, J.; Pettersson, T.; Wågberg, L.; Beidaghi, M.; Hamedi, M.M. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 2019, 31, e1902977. [Google Scholar] [CrossRef] [Green Version]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv.Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [Green Version]
- Torres, C.; Quispe, R.; Calderón, N.Z.; Eggert, L.; Hopfeld, M.; Rojas, C.; Camargo, M.K.; Bund, A.; Schaaf, P.; Grieseler, R. Development of the phase composition and the properties of Ti2AlC and Ti3AlC2 MAX-phase thin films–A multilayer approach towards high phase purity. Appl. Surf. Sci. 2020, 537, 147864. [Google Scholar] [CrossRef]
- Dai, B.; Zhao, B.; Xi, X.; Su, T.; Fan, B.; Zhang, R.; Yang, R. Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. J. Mater. Chem. C 2018, 6, 5690–5697. [Google Scholar] [CrossRef]
- Liu, R.; Li, W. High-Thermal-Stability and High-Thermal-Conductivity Ti3C2Tx MXene/Poly(vinyl alcohol) (PVA) Composites. ACS Omega 2018, 3, 2609–2617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Liu, Y.; Zhao, X.; Liu, X.; Fan, L.-Z. Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites. J. Mater. Chem. A 2019, 7, 16712–16719. [Google Scholar] [CrossRef]
- Wen, Y.; Ma, C.; Wei, Z.; Zhu, X.; Li, Z. FeNC/MXene hybrid nanosheet as an efficient electrocatalyst for oxygen reduction reaction. Rsc Adv. 2019, 9, 13424–13430. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, H.; Wang, B.; Shen, C.; Zhang, C. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett. 2016, 12, 702–710. [Google Scholar] [CrossRef]
- Zhang, P.; Fan, C.; Wang, R.; Xu, C.; Cheng, J.; Wang, L.; Lu, Y.; Luo, P. Pd/MXene(Ti3C2Tx)/reduced graphene oxide hybrid catalyst for methanol electrooxidation. Nanotechnology 2020, 31, 09LT01. [Google Scholar] [CrossRef] [PubMed]
- Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2 Tx MXene. Chem. Mater. 2020, 32, 3480–3488. [Google Scholar] [CrossRef]
- Shahinpoor, M. Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—A review. Electrochim. Acta 2003, 48, 2343–2353. [Google Scholar] [CrossRef]
- Come, J.; Black, J.M.; Lukatskaya, M.R.; Naguib, M.; Beidaghi, M.; Rondinone, A.J.; Kalinin, S.V.; Wesolowski, D.J.; Gogotsi, Y.; Balke, N. Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy 2015, 17, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Rozier, P.; Duployer, B.; Taberna, P.; Anasori, B.; Gogotsi, Y.; Simon, P. Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochem. Commun. 2016, 72, 50–53. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Guan, Z.; Zhu, Q.; Anasori, B.; Gogotsi, Y.; Xu, B. Enhanced Ionic Accessibility of Flexible MXene Electrodes Produced by Natural Sedimentation. Nano-Micro Lett. 2020, 12, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Yoo, Y.; Lee, J. Characterization of Nafion nanocomposites with spheric silica, layered silicate, and amphiphilic organic molecule and their actuator application. Macromol. Res. 2015, 23, 167–176. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, L.; Zhou, A.; Li, Z.; Chen, J.; Bala, H.; Hu, Q.; Cao, X. Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 2015, 150, 62–64. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, S.; Li, B.; Gong, Y.; Yang, S. Horizontal Growth of Lithium on Parallelly Aligned MXene Layers towards Dendrite-Free Metallic Lithium Anodes. Adv. Mater. 2019, 31, 1901820. [Google Scholar] [CrossRef]
- Porfiri, M.; Leronni, A.; Bardella, L. An alternative explanation of back-relaxation in ionic polymer metal composites. Extrem. Mech. Lett. 2017, 13, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466–4474. [Google Scholar] [CrossRef]
Film | Water Uptake (%) | Swelling (%) | IEC (meq/g) | k (s−1) |
---|---|---|---|---|
Pure Nafion | 34.7 | 15.0 | 0.918 | 0.027 |
0.5% MXene | 44.5 | 17.5 | 0.947 | 0.150 |
1% MXene | 51.9 | 20.4 | 0.930 | 0.160 |
2% MXene | 52.1 | 18.3 | 0.924 | 0.252 |
5% MXene | 37.0 | 11.8 | 0.899 | 0.030 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Zhou, Z.; Jiang, Y.; Wang, Q.; Sun, Q.; Zu, L.; Gao, X.; Lian, H.; Cao, M.; Cui, X. MXene Enhanced the Electromechanical Performance of a Nafion-Based Actuator. Materials 2022, 15, 2833. https://doi.org/10.3390/ma15082833
Tang X, Zhou Z, Jiang Y, Wang Q, Sun Q, Zu L, Gao X, Lian H, Cao M, Cui X. MXene Enhanced the Electromechanical Performance of a Nafion-Based Actuator. Materials. 2022; 15(8):2833. https://doi.org/10.3390/ma15082833
Chicago/Turabian StyleTang, Xiaoming, Ziyi Zhou, Yuehang Jiang, Qian Wang, Qi Sun, Lei Zu, Xing Gao, Huiqin Lian, Minhua Cao, and Xiuguo Cui. 2022. "MXene Enhanced the Electromechanical Performance of a Nafion-Based Actuator" Materials 15, no. 8: 2833. https://doi.org/10.3390/ma15082833
APA StyleTang, X., Zhou, Z., Jiang, Y., Wang, Q., Sun, Q., Zu, L., Gao, X., Lian, H., Cao, M., & Cui, X. (2022). MXene Enhanced the Electromechanical Performance of a Nafion-Based Actuator. Materials, 15(8), 2833. https://doi.org/10.3390/ma15082833