First-Principles Calculations of Thermoelectric Transport Properties of Quaternary and Ternary Bulk Chalcogenide Crystals
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Transport Properties of 30 Chalcogenide Crystals
3.2. Transport Properties of AgSbSe2 and AgSbTe2 Crystals and the Doped Ones: AgSb0.94Cd0.06Te2 and AgSbTe1.85Se0.15
3.3. Correlation between Transport and Bonding Properties in 30 Chalcogenide Crystals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, S.A.; Azam, S. Electronic structure and thermoelectric properties of PbS1-xTex (x = 0, 0.25, 0.50, 0.75, 1.0) alloys: Ab initio study. Superlattices Microstruct. 2018, 124, 248–256. [Google Scholar] [CrossRef]
- Rull-Bravo, M.; Moure, A.; Fernández, J.; Martín-González, M. Skutterudites as thermoelectric materials: Revisited. RSC Adv. 2015, 5, 41653–41667. [Google Scholar] [CrossRef]
- Tan, G.; Zhao, L.-D.; Kanatzidis, M.G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123–12149. [Google Scholar] [CrossRef] [PubMed]
- Pichanusakorn, P.; Kuang, Y.; Patel, C.; Tu, C.; Bandaru, P. Feasibility of enhancing the thermoelectric power factor in GaNx As1−x. Phys. Rev. B 2012, 86, 085314. [Google Scholar] [CrossRef] [Green Version]
- Ouardi, S.; Fecher, G.H.; Felser, C.; Schwall, M.; Naghavi, S.S.; Gloskovskii, A.; Balke, B.; Hamrle, J.; Postava, K.; Pištora, J. Electronic structure and optical, mechanical, and transport properties of the pure, electron-doped, and hole-doped Heusler compound CoTiSb. Phys. Rev. B 2012, 86, 045116. [Google Scholar] [CrossRef]
- Kim, H.; Kaviany, M. Effect of thermal disorder on high figure of merit in PbTe. Phys. Rev. B 2012, 86, 045213. [Google Scholar] [CrossRef] [Green Version]
- Kerdsongpanya, S.; Alling, B.; Eklund, P. Effect of point defects on the electronic density of states of ScN studied by first-principles calculations and implications for thermoelectric properties. Phys. Rev. B 2012, 86, 195140. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; He, W.; Chang, C.; Wang, G.; Wang, J.; Zhao, L.-D. Thermoelectric transport properties of rock-salt SnSe: First-principles investigation. J. Mater. Chem. C 2018, 6, 12016–12022. [Google Scholar] [CrossRef]
- Rowe, D.M. Thermoelectrics Handbook: Macro to Nano; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Furlong, R.R.; Wahlquist, E.J. US space missions using radioisotope power systems. Nucl. News 1999, 42, 26–35. [Google Scholar]
- Yang, J.; Caillat, T. Thermoelectric materials for space and automotive power generation. MRS Bull. 2006, 31, 224–229. [Google Scholar] [CrossRef]
- Kraemer, D.; Poudel, B.; Feng, H.-P.; Caylor, J.C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X.; Wang, D.; Muto, A. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, S.S.; He, J.; Xia, Y.; Wolverton, C. Pd2Se3 monolayer: A promising two-dimensional thermoelectric material with ultralow lattice thermal conductivity and high power factor. Chem. Mater. 2018, 30, 5639–5647. [Google Scholar] [CrossRef] [Green Version]
- Bejan, A.; Kraus, A.D. Heat Transfer Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 1. [Google Scholar]
- Aliabad, H.R.; Ghazanfari, M.; Ahmad, I.; Saeed, M. Ab initio calculations of structural, optical and thermoelectric properties for CoSb3 and ACo4Sb12 (A = La, Tl and Y) compounds. Comput. Mater. Sci. 2012, 65, 509–519. [Google Scholar] [CrossRef]
- Yuan, K.; Sun, Z.; Zhang, X.; Gong, X.; Tang, D. A first-principles study of the thermoelectric properties of rhombohedral GeSe. Phys. Chem. Chem. Phys. 2020, 22, 1911–1922. [Google Scholar] [CrossRef]
- Hoat, D. Comparative study of structural, electronic, optical and thermoelectric properties of GaS bulk and monolayer. Philos. Mag. 2019, 99, 736–751. [Google Scholar] [CrossRef]
- Hoat, D.; Naseri, M.; Ponce-Perez, R.; Hieu, N.N.; Vu, T.V.; Rivas-Silva, J.; Cocoletzi, G.H. Reducing the electronic band gap of BN monolayer by coexistence of P (As)-doping and external electric field. Superlattices Microstruct. 2020, 137, 106357. [Google Scholar] [CrossRef]
- Hoat, D.; Naseri, M.; Hieu, N.N.; Ponce-Pérez, R.; Rivas-Silva, J.; Cocoletzi, G.H. Transition from indirect to direct band gap in SiC monolayer by chemical functionalization: A first principles study. Superlattices Microstruct. 2020, 137, 106320. [Google Scholar] [CrossRef]
- Naseri, M.; Hoat, D. Prediction of 2D Li2X (X = Se, Te) monolayer semiconductors by first principles calculations. Phys. Lett. A 2019, 383, 125992. [Google Scholar] [CrossRef]
- Hong, M.; Wang, Y.; Liu, W.; Matsumura, S.; Wang, H.; Zou, J.; Chen, Z.G. Arrays of planar vacancies in superior thermoelectric Ge1−x−yCdxBiyTe with band convergence. Adv. Energy Mater. 2018, 8, 1801837. [Google Scholar] [CrossRef]
- Tang, G.; Liu, J.; Zhang, J.; Li, D.; Rara, K.H.; Xu, R.; Lu, W.; Liu, J.; Zhang, Y.; Feng, Z. Realizing high thermoelectric performance below phase transition temperature in polycrystalline snse via lattice anharmonicity strengthening and strain engineering. ACS Appl. Mater. Interfaces 2018, 10, 30558–30565. [Google Scholar] [CrossRef]
- Gayner, C.; Kar, K.K. Recent advances in thermoelectric materials. Prog. Mater. Sci. 2016, 83, 330–382. [Google Scholar] [CrossRef]
- Ju, H.; Kim, M.; Kim, J. A facile fabrication of n-type Bi2Te3 nanowire/graphene layer-by-layer hybrid structures and their improved thermoelectric performance. Chem. Eng. J. 2015, 275, 102–112. [Google Scholar] [CrossRef]
- Han, C.; Sun, Q.; Li, Z.; Dou, S.X. Thermoelectric enhancement of different kinds of metal chalcogenides. Adv. Energy Mater. 2016, 6, 1600498. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.L.; Chen, I.W.; Huang, F.Q.; Chen, L.D. Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv. Mater. 2009, 21, 3808–3812. [Google Scholar] [CrossRef]
- Sevik, C.; Çağın, T. Ab initio study of thermoelectric transport properties of pure and doped quaternary compounds. Phys. Rev. B 2010, 82, 045202. [Google Scholar] [CrossRef]
- Ibáñez, M.; Zamani, R.; LaLonde, A.; Cadavid, D.; Li, W.; Shavel, A.; Arbiol, J.; Morante, J.R.; Gorsse, S.; Snyder, G.J. Cu2ZnGeSe4 nanocrystals: Synthesis and thermoelectric properties. J. Am. Chem. Soc. 2012, 134, 4060–4063. [Google Scholar] [CrossRef] [Green Version]
- Zeier, W.G.; Heinrich, C.P.; Day, T.; Panithipongwut, C.; Kieslich, G.; Brunklaus, G.; Snyder, G.J.; Tremel, W. Bond strength dependent superionic phase transformation in the solid solution series Cu2ZnGeSe4−xSx. J. Mater. Chem. A 2014, 2, 1790–1794. [Google Scholar] [CrossRef] [Green Version]
- Navrátil, J.; Kucek, V.; Plecháček, T.; Černošková, E.; Laufek, F.; Drašar, Č.; Knotek, P. Thermoelectric Properties of Cu2HgSnSe4-Cu2HgSnTe4 Solid Solution. J. Electron. Mater. 2014, 43, 3719–3725. [Google Scholar] [CrossRef]
- Bekki, B.; Amara, K.; Marbouh, N.; Khelfaoui, F.; Benallou, Y.; Elkeurti, M.; Bentayeb, A. Theoretical study of structural, elastic and thermodynamic properties of Cu2MgSnX4 (X = S, Se and Te) quaternary compounds. Comput. Condens. Matter 2019, 18, e00339. [Google Scholar] [CrossRef]
- Altosaar, M.; Raudoja, J.; Timmo, K.; Danilson, M.; Grossberg, M.; Krustok, J.; Mellikov, E. Cu2Zn1–xCdxSn (Se1–ySy)4 solid solutions as absorber materials for solar cells. Physica Status Solidi (A) 2008, 205, 167–170. [Google Scholar] [CrossRef]
- Khyzhun, O.; Bekenev, V.; Ocheretova, V.; Fedorchuk, A.; Parasyuk, O. Electronic structure of Cu2ZnGeSe4 single crystal: Ab initio FP-LAPW calculations and X-ray spectroscopy measurements. Phys. B Condens. Matter 2015, 461, 75–84. [Google Scholar] [CrossRef]
- Jiang, H.; Dai, P.; Feng, Z.; Fan, W.; Zhan, J. Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. J. Mater. Chem. 2012, 22, 7502–7506. [Google Scholar] [CrossRef]
- Levcenco, S.; Dumcenco, D.; Huang, Y.; Arushanov, E.; Tezlevan, V.; Tiong, K.; Du, C. Polarization-dependent electrolyte electroreflectance study of Cu2ZnSiS4 and Cu2ZnSiSe4 single crystals. J. Alloys Compd. 2011, 509, 7105–7108. [Google Scholar] [CrossRef]
- Li, Y.; Fan, W.; Sun, H.; Cheng, X.; Li, P.; Zhao, X. Electronic, optical and lattice dynamic properties of the novel diamond-like semiconductors Li2CdGeS4 and Li2CdSnS4. J. Phys. Condens. Matter 2011, 23, 225401. [Google Scholar] [CrossRef] [PubMed]
- Steinhagen, C.; Panthani, M.G.; Akhavan, V.; Goodfellow, B.; Koo, B.; Korgel, B.A. Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J. Am. Chem. Soc. 2009, 131, 12554–12555. [Google Scholar] [CrossRef]
- Guo, Q.; Ford, G.M.; Yang, W.-C.; Walker, B.C.; Stach, E.A.; Hillhouse, H.W.; Agrawal, R. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 2010, 132, 17384–17386. [Google Scholar] [CrossRef]
- Chen, S.; Gong, X.; Walsh, A.; Wei, S.-H. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds. Phys. Rev. B 2009, 79, 165211. [Google Scholar] [CrossRef]
- Schnabel, T.; Löw, M.; Ahlswede, E. Vacuum-free preparation of 7.5% efficient Cu2ZnSn (S, Se)4 solar cells based on metal salt precursors. Sol. Energy Mater. Sol. Cells 2013, 117, 324–328. [Google Scholar] [CrossRef]
- Fella, C.M.; Romanyuk, Y.E.; Tiwari, A.N. Technological status of Cu2ZnSn (S, Se)4 thin film solar cells. Sol. Energy Mater. Sol. Cells 2013, 119, 276–277. [Google Scholar] [CrossRef]
- Vu, T.V.; Lavrentyev, A.; Gabrelian, B.; Parasyuk, O.; Ocheretova, V.; Khyzhun, O. Electronic structure and optical properties of Ag2HgSnSe4: First-principles DFT calculations and X-ray spectroscopy studies. J. Alloys Compd. 2018, 732, 372–384. [Google Scholar] [CrossRef]
- Liu, B.-W.; Zhang, M.-J.; Zhao, Z.-Y.; Zeng, H.-Y.; Zheng, F.-K.; Guo, G.-C.; Huang, J.-S. Synthesis, structure, and optical properties of the quaternary diamond-like compounds I2–II–IV–VI4 (I = Cu; II = Mg; IV = Si, Ge; VI = S, Se). J. Solid State Chem. 2013, 204, 251–256. [Google Scholar] [CrossRef]
- Hong, A.; Yuan, C.; Liu, J. Quaternary compounds Ag2XYSe4 (X = Ba, Sr; Y = Sn, Ge) as novel potential thermoelectric materials. J. Phys. D Appl. Phys. 2020, 53, 115302. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Ma, Q.; Xue, H.; Wang, Q.; Luo, P.; Yang, J.; Zhang, W.; Luo, J. Tetrahedral Distortion and Thermoelectric Performance of the Ag-Substituted CuInTe2 Chalcopyrite Compound. ACS Appl. Energy Mater. 2020, 3, 11015–11023. [Google Scholar] [CrossRef]
- Roychowdhury, S.; Ghosh, T.; Arora, R.; Samanta, M.; Xie, L.; Singh, N.K.; Soni, A.; He, J.; Waghmare, U.V.; Biswas, K. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science 2021, 371, 722–727. [Google Scholar] [CrossRef]
- Hong, M.; Chen, Z.G.; Yang, L.; Liao, Z.M.; Zou, Y.C.; Chen, Y.H.; Matsumura, S.; Zou, J. Achieving zT > 2 in p-Type AgSbTe2−xSex Alloys via Exploring the Extra Light Valence Band and Introducing Dense Stacking Faults. Adv. Energy Mater. 2018, 8, 1702333. [Google Scholar] [CrossRef]
- Deng, S.; Jiang, X.; Zhang, Z.; Liu, J.; Chen, L.; Qi, N.; Tang, X.; Wu, Y.; Chen, Z. Structural features and thermoelectric performance of chalcopyrite Cu (In, Ga) Te2 system by isoelectronic substitution. Curr. Appl. Phys. 2021, 26, 24–34. [Google Scholar] [CrossRef]
- Zhong, Y.; Sarker, D.; Fan, T.; Xu, L.; Li, X.; Qin, G.Z.; Han, Z.K.; Cui, J. Computationally Guided Synthesis of High Performance Thermoelectric Materials: Defect Engineering in AgGaTe2. Adv. Electron. Mater. 2021, 7, 2001262. [Google Scholar] [CrossRef]
- Muchtar, A.R.; Srinivasan, B.; Tonquesse, S.L.; Singh, S.; Soelami, N.; Yuliarto, B.; Berthebaud, D.; Mori, T. Physical Insights on the Lattice Softening Driven Mid-Temperature Range Thermoelectrics of Ti/Zr-Inserted SnTe—An Outlook Beyond the Horizons of Conventional Phonon Scattering and Excavation of Heikes’ Equation for Estimating Carrier Properties. Adv. Energy Mater. 2021, 11, 2101122. [Google Scholar] [CrossRef]
- Barbier, T.; Srinivasan, B.; Berthebaud, D.; Eyert, V.; Frésard, R.; Macaigne, R.; Marinel, S.; Lebedev, O.I.; Guilmeau, E.; Maignan, A. Structural study and evaluation of thermoelectric properties of single-phase isocubanite (CuFe2S3) synthesized via an ultra-fast efficient microwave radiation technique. Sustain. Energy Fuels 2021, 5, 5804–5813. [Google Scholar] [CrossRef]
- Azam, S.; Khan, S.A.; Minar, J.; Khan, W.; Din, H.U.; Khenata, R.; Murtaza, G.; Bin-Omran, S.; Goumri-Said, S. Coulomb interaction and spin-orbit coupling calculations of thermoelectric properties of the quaternary chalcogenides Tl2PbXY4 (X = Zr, Hf and Y = S, Se). Semicond. Sci. Technol. 2015, 30, 105018. [Google Scholar] [CrossRef]
- Selezen, A.; Olekseyuk, I.; Myronchuk, G.; Smitiukh, O.; Piskach, L. Synthesis and structure of the new semiconductor compounds Tl2BIIDIVX4 (BII–Cd, Hg; DIV–Si, Ge; X–Se, Te) and isothermal sections of the Tl2Se–CdSe-Ge (Sn)Se2 systems at 570 K. J. Solid State Chem. 2020, 289, 121422. [Google Scholar] [CrossRef]
- Vu, T.V.; Lavrentyev, A.; Gabrelian, B.; Selezen, A.; Piskach, L.; Myronchuk, G.; Denysyuk, M.; Tkach, V.; Pham, K.D.; Khyzhun, O. Crystal growth, electronic and optical properties of Tl2CdSnSe4, a recently discovered prospective semiconductor for application in thin film solar cells and optoelectronics. Opt. Mater. 2021, 111, 110656. [Google Scholar] [CrossRef]
- Mozolyuk, M.Y.; Piskach, L.; Fedorchuk, A.; Olekseyuk, I.; Parasyuk, O. Physico-chemical interaction in the Tl2Se–HgSe–DIVSe2 systems (DIV–Si, Sn). Mater. Res. Bull. 2012, 47, 3830–3834. [Google Scholar] [CrossRef]
- Lavrentyev, A.; Gabrelian, B.; Vu, T.V.; Ananchenko, L.; Myronchuk, G.; Parasyuk, O.; Tkach, V.; Kopylova, K.; Khyzhun, O. Electronic and optical properties of quaternary sulfide Tl2HgSnS4, a promising optoelectronic semiconductor: A combined experimental and theoretical study. Opt. Mater. 2019, 92, 294–302. [Google Scholar] [CrossRef]
- Bagci, S.; Yalcin, B.G.; Aliabad, H.R.; Duman, S.; Salmankurt, B. Structural, electronic, optical, vibrational and transport properties of CuBX2 (X = S, Se, Te) chalcopyrites. RSC Adv. 2016, 6, 59527–59540. [Google Scholar] [CrossRef]
- Cao, Y.; Su, X.; Meng, F.; Bailey, T.P.; Zhao, J.; Xie, H.; He, J.; Uher, C.; Tang, X. Origin of the Distinct Thermoelectric Transport Properties of Chalcopyrite ABTe2 (A = Cu, Ag; B = Ga, In). Adv. Funct. Mater. 2020, 30, 2005861. [Google Scholar] [CrossRef]
- Yang, J.; Fan, Q.; Cheng, X. Prediction for electronic, vibrational and thermoelectric properties of chalcopyrite AgX (X = In, Ga) Te2: PBE+ U approach. R. Soc. Open Sci. 2017, 4, 170750. [Google Scholar] [CrossRef] [Green Version]
- Qiu, P.; Qin, Y.; Zhang, Q.; Li, R.; Yang, J.; Song, Q.; Tang, Y.; Bai, S.; Shi, X.; Chen, L. Intrinsically High Thermoelectric Performance in AgInSe2 n-Type Diamond-Like Compounds. Adv. Sci. 2018, 5, 1700727. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Luo, Y.; Li, X.; Cui, J. Silver vacancy concentration engineering leading to the ultralow lattice thermal conductivity and improved thermoelectric performance of Ag1−xInTe2. Sci. Rep. 2019, 9, 18879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, D.; Xie, S.; Liu, Y.; Lin, J.; Li, J. First-principles study of thermoelectric and lattice vibrational properties of chalcopyrite CuGaTe2. J. Alloys Compd. 2013, 570, 150–155. [Google Scholar] [CrossRef]
- Ahmed, F.; Tsujii, N.; Mori, T. Microstructure analysis and thermoelectric properties of iron doped CuGaTe2. J. Mater. 2018, 4, 221–227. [Google Scholar] [CrossRef]
- Qin, Y.; Qiu, P.; Liu, R.; Li, Y.; Hao, F.; Zhang, T.; Ren, D.; Shi, X.; Chen, L. Optimized thermoelectric properties in pseudocubic diamond-like CuGaTe2 compounds. J. Mater. Chem. A 2016, 4, 1277–1289. [Google Scholar] [CrossRef]
- Yaseen, M.S.; Sun, J.; Fang, H.; Murtaza, G.; Sholl, D.S. First-principles study of electronic and optical properties of ternary compounds AuBX2 (X = S, Se, Te) and AuMTe2 (M = Al, In, Ga). Solid State Sci. 2021, 111, 106508. [Google Scholar] [CrossRef]
- Dongho-Nguimdo, G.; Igumbor, E.; Zambou, S.; Joubert, D.P. First principles prediction of the solar cell efficiency of chalcopyrite materials AgMX2 (M = In, Al; X = S, Se, Te). Comput. Condens. Matter 2019, 21, e00391. [Google Scholar] [CrossRef] [Green Version]
- Wernick, J.; Geller, S.; Benson, K. Constitution of the AgSbSe2−AgSbTe2–AgBiSe2–AgBiTe2 system. J. Phys. Chem. Solids 1958, 7, 240–248. [Google Scholar] [CrossRef]
- Wu, H.-J.; Wei, P.-C.; Cheng, H.-Y.; Deng, J.-R.; Chen, Y.-Y. Ultralow thermal conductivity in n-type Ge-doped AgBiSe2 thermoelectric materials. Acta Mater. 2017, 141, 217–229. [Google Scholar] [CrossRef]
- Hoang, K.; Mahanti, S.; Salvador, J.R.; Kanatzidis, M.G. Atomic ordering and gap formation in Ag-Sb-based ternary chalcogenides. Phys. Rev. Lett. 2007, 99, 156403. [Google Scholar] [CrossRef] [Green Version]
- Goto, Y.; Nishida, A.; Nishiate, H.; Murata, M.; Lee, C.; Miura, A.; Moriyoshi, C.; Kuroiwa, Y.; Mizuguchi, Y. Effect of Te substitution on crystal structure and transport properties of AgBiSe2 thermoelectric material. Dalton Trans. 2018, 47, 2575–2580. [Google Scholar] [CrossRef]
- Liu, X.-C.; Wang, Y.-M.; Qi, M.-L.; Pan, M.-Y. Enhanced thermoelectric properties in Ag-rich AgSbSe2. J. Solid State Chem. 2020, 288, 121454. [Google Scholar] [CrossRef]
- Wojciechowski, K.; Tobola, J.; Schmidt, M.; Zybala, R. Crystal structure, electronic and transport properties of AgSbSe2 and AgSbTe2. J. Phys. Chem. Solids 2008, 69, 2748–2755. [Google Scholar] [CrossRef] [Green Version]
- Guin, S.N.; Chatterjee, A.; Negi, D.S.; Datta, R.; Biswas, K. High thermoelectric performance in tellurium free p-type AgSbSe2. Energy Environ. Sci. 2013, 6, 2603–2608. [Google Scholar] [CrossRef]
- Guin, S.N.; Chatterjee, A.; Biswas, K. Enhanced thermoelectric performance in p-type AgSbSe2 by Cd-doping. RSC Adv. 2014, 4, 11811–11815. [Google Scholar] [CrossRef]
- Li, D.; Qin, X.; Zou, T.; Zhang, J.; Ren, B.; Song, C.; Liu, Y.; Wang, L.; Xin, H.; Li, J. High thermoelectric properties for Sn-doped AgSbSe2. J. Alloys Compd. 2015, 635, 87–91. [Google Scholar] [CrossRef]
- Lee, J.K.; Oh, M.-W.; Ryu, B.; Lee, J.E.; Kim, B.-S.; Min, B.-K.; Joo, S.-J.; Lee, H.-W.; Park, S.-D. Enhanced thermoelectric properties of AgSbTe2 obtained by controlling heterophases with Ce doping. Sci. Rep. 2017, 7, 4496. [Google Scholar] [CrossRef] [PubMed]
- Ching, W.-Y.; Rulis, P. Electronic Structure Methods for Complex Materials: The Orthogonalized Linear Combination of Atomic Orbitals; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Hasan, S.; Adhikari, P.; Baral, K.; Ching, W.-Y. Conspicuous interatomic bonding in chalcogenide crystals and implications on electronic, optical, and elastic properties. AIP Adv. 2020, 10, 075216. [Google Scholar] [CrossRef]
- Hasan, S.; Baral, K.; Li, N.; Ching, W.-Y. Structural and physical properties of 99 complex bulk chalcogenides crystals using first-principles calculations. Sci. Rep. 2021, 11, 9921. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Dharmawardhana, C.; Bakare, M.; Misra, A.; Ching, W.Y. Nature of interatomic bonding in controlling the mechanical properties of calcium silicate hydrates. J. Am. Ceram. Soc. 2016, 99, 2120–2130. [Google Scholar] [CrossRef]
- Adhikari, P.; Khaoulaf, R.; Ez-Zahraouy, H.; Ching, W.-Y. Complex interplay of interatomic bonding in a multi-component pyrophosphate crystal: K2Mg (H2P2O7)2 H2O. R. Soc. Open Sci. 2017, 4, 170982. [Google Scholar] [CrossRef] [Green Version]
- Poudel, L.; Tamerler, C.; Misra, A.; Ching, W.-Y. Atomic-Scale Quantification of Interfacial Binding between Peptides and Inorganic Crystals: The Case of Calcium Carbonate Binding Peptide on Aragonite. J. Phys. Chem. C 2017, 121, 28354–28363. [Google Scholar] [CrossRef]
- San, S.; Li, N.; Tao, Y.; Zhang, W.; Ching, W.Y. Understanding the atomic and electronic origin of mechanical property in thaumasite and ettringite mineral crystals. J. Am. Ceram. Soc. 2018, 101, 5177–5187. [Google Scholar] [CrossRef]
- Hunca, B.; Dharmawardhana, C.; Sakidja, R.; Ching, W.-Y. Ab initio calculations of thermomechanical properties and electronic structure of vitreloy Zr41.2Ti13.8Cu12.5Ni10Be22.5. Phys. Rev. B 2016, 94, 144207. [Google Scholar] [CrossRef] [Green Version]
- Ching, W.Y.; Yoshiya, M.; Adhikari, P.; Rulis, P.; Ikuhara, Y.; Tanaka, I. First-principles study in an inter-granular glassy film model of silicon nitride. J. Am. Ceram. Soc. 2018, 101, 2673–2688. [Google Scholar] [CrossRef]
- Ching, W.-Y.; Poudel, L.; San, S.; Baral, K. Interfacial interaction between suolunite crystal and silica binding peptide for novel bioinspired cement. ACS Comb. Sci. 2019, 21, 794–804. [Google Scholar] [CrossRef]
- Poudel, L.; Twarock, R.; Steinmetz, N.F.; Podgornik, R.; Ching, W.-Y. Impact of Hydrogen Bonding in the Binding Site between Capsid Protein and MS2 Bacteriophage ssRNA. J. Phys. Chem. B 2017, 121, 6321–6330. [Google Scholar] [CrossRef]
- Adhikari, P.; Li, N.; Shin, M.; Steinmetz, N.F.; Twarock, R.; Podgornik, R.; Ching, W.-Y. Intra-and intermolecular atomic-scale interactions in the receptor binding domain of SARS-CoV-2 spike protein: Implication for ACE2 receptor binding. Phys. Chem. Chem. Phys. 2020, 22, 18272–18283. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef] [Green Version]
- Dharmawardhana, C.; Misra, A.; Ching, W.-Y. Quantum mechanical metric for internal cohesion in cement crystals. Sci. Rep. 2014, 4, 7332. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, G.K.; Singh, D.J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Ziman, J.M. Electrons and Phonons: The Theory of Transport Phenomena in Solids; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Allen, P.B.; Pickett, W.E.; Krakauer, H. Anisotropic normal-state transport properties predicted and analyzed for high-Tc oxide superconductors. Phys. Rev. B 1988, 37, 7482. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.J.; Mazin, I. Calculated thermoelectric properties of La-filled skutterudites. Phys. Rev. B 1997, 56, R1650. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Sun, W.; Armiento, R.; Lazic, P.; Ceder, G. Band structure engineering through orbital interaction for enhanced thermoelectric power factor. Appl. Phys. Lett. 2014, 104, 082107. [Google Scholar] [CrossRef]
- Zhu, H.; Hautier, G.; Aydemir, U.; Gibbs, Z.M.; Li, G.; Bajaj, S.; Pöhls, J.-H.; Broberg, D.; Chen, W.; Jain, A. Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. J. Mater. Chem. C 2015, 3, 10554–10565. [Google Scholar] [CrossRef] [Green Version]
- Aydemir, U.; Pöhls, J.-H.; Zhu, H.; Hautier, G.; Bajaj, S.; Gibbs, Z.M.; Chen, W.; Li, G.; Ohno, S.; Broberg, D. YCuTe2: A member of a new class of thermoelectric materials with CuTe4-based layered structure. J. Mater. Chem. A 2016, 4, 2461–2472. [Google Scholar] [CrossRef] [Green Version]
- Madsen, G.K.; Schwarz, K.; Blaha, P.; Singh, D.J. Electronic structure and transport in type-I and type-VIII clathrates containing strontium, barium, and europium. Phys. Rev. B 2003, 68, 125212. [Google Scholar] [CrossRef]
- Bentien, A.; Pacheco, V.; Paschen, S.; Grin, Y.; Steglich, F. Transport properties of composition tuned α- and β-Eu8Ga16−xGe30+x. Phys. Rev. B 2005, 71, 165206. [Google Scholar] [CrossRef]
- Pacheco, V.; Bentien, A.; Carrillo-Cabrera, W.; Paschen, S.; Steglich, F.; Grin, Y. Relationship between composition and charge carrier concentration in Eu8Ga16−xGe30+x clathrates. Phys. Rev. B 2005, 71, 165205. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Y.; Xiao, B.; Cheng, Y. Anisotropic electrical and lattice transport properties of ordered quaternary phases Cr2TiAlC2 and Mo2TiAlC2: A first principles study. Phys. Lett. A 2016, 380, 3748–3755. [Google Scholar] [CrossRef]
- Miyata, M.; Ozaki, T.; Takeuchi, T.; Nishino, S.; Inukai, M.; Koyano, M. High-throughput screening of sulfide thermoelectric materials using electron transport calculations with OpenMX and BoltzTraP. J. Electron. Mater. 2018, 47, 3254–3259. [Google Scholar] [CrossRef]
- Madsen, G.K.; Carrete, J.; Verstraete, M.J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 2018, 231, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Cutler, M.; Leavy, J.; Fitzpatrick, R. Electronic transport in semimetallic cerium sulfide. Phys. Rev. 1964, 133, A1143. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific: Singapore, 2011; pp. 101–110. [Google Scholar]
- Gui, Y.; Ye, L.; Jin, C.; Zhang, J.; Wang, Y. The nature of the high thermoelectric properties of CuInX2 (X = S, Se and Te): First-principles study. Appl. Surf. Sci. 2018, 458, 564–571. [Google Scholar] [CrossRef]
- Kucek, V.; Drasar, C.; Navratil, J.; Plechacek, T.; Benes, L. Thermoelectric properties of Ni-doped CuInTe2. J. Phys. Chem. Solids 2015, 83, 18–23. [Google Scholar] [CrossRef]
- Xia, Z.; Wang, G.; Zhou, X.; Wen, W. Substitution defect enhancing thermoelectric properties in CuInTe2. Mater. Res. Bull. 2018, 101, 184–189. [Google Scholar] [CrossRef]
- Chen, H.; Yang, C.; Liu, H.; Zhang, G.; Wan, D.; Huang, F. Thermoelectric properties of CuInTe2/graphene composites. CrystEngComm 2013, 15, 6648–6651. [Google Scholar] [CrossRef]
- Kumar Gudelli, V.; Kanchana, V.; Vaitheeswaran, G.; Svane, A.; Christensen, N.E. Thermoelectric properties of chalcopyrite type CuGaTe2 and chalcostibite CuSbS2. J. Appl. Phys. 2013, 114, 223707. [Google Scholar] [CrossRef] [Green Version]
- Plirdpring, T.; Kurosaki, K.; Kosuga, A.; Day, T.; Firdosy, S.; Ravi, V.; Snyder, G.J.; Harnwunggmoung, A.; Sugahara, T.; Ohishi, Y. Chalcopyrite CuGaTe2: A high-efficiency bulk thermoelectric material. Adv. Mater. 2012, 24, 3622–3626. [Google Scholar] [CrossRef]
- Yusufu, A.; Kurosaki, K.; Kosuga, A.; Sugahara, T.; Ohishi, Y.; Muta, H.; Yamanaka, S. Thermoelectric properties of Ag1−xGaTe2 with chalcopyrite structure. Appl. Phys. Lett. 2011, 99, 061902. [Google Scholar] [CrossRef]
- Cai, S.; Liu, Z.; Sun, J.; Li, R.; Fei, W.; Sui, J. Enhancement of thermoelectric properties by Na doping in Te-free p-type AgSbSe2. Dalton Trans. 2015, 44, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Hogarth, C. Applications of Thermo-Electricity. Phys. Bull. 1960, 11, 148. [Google Scholar] [CrossRef]
- Gudelli, V.K.; Kanchana, V.; Vaithesswaran, G. CuAlTe2: A promising bulk thermoelectric material. J. Alloys Compd. 2015, 648, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Dongho Nguimdo, G.; Joubert, D.P. A density functional (PBE, PBEsol, HSE06) study of the structural, electronic and optical properties of the ternary compounds AgAlX2 (X = S, Se, Te). Eur. Phys. J. B 2015, 88, 1–10. [Google Scholar] [CrossRef]
- Asokamani, R.; Amirthakumari, R.; Rita, R.; Ravi, C. Electronic structure calculations and physical properties of ABX2 (A = Cu, Ag; B = Ga, In; X = S, Se, Te) ternary chalcopyrite systems. Phys. Status Solidi (B) 1999, 213, 349–363. [Google Scholar] [CrossRef]
- Yaseen, M.S.; Murtaza, G.; Murtaza, G. Theoretical investigation of the structural stabilities, optoelectronic and thermoelectric properties of ternary alloys N a I n Y 2 (Y = S, S e and T e) through modified Becke–Johnson exchange potential. Int. J. Mod. Phys. B 2020, 34, 2050133. [Google Scholar] [CrossRef]
- Aikebaier, Y.; Kurosaki, K.; Sugahara, T.; Ohishi, Y.; Muta, H.; Yamanaka, S. High-temperature thermoelectric properties of non-stoichiometric Ag1−xInTe2 with chalcopyrite structure. Mater. Sci. Eng. B 2012, 177, 999–1002. [Google Scholar] [CrossRef]
# | Crystal | n (e−/cm3) | Highest ZT | Highest PF (mW/cm.K2) | κele (W/m.K) at 900 K |
---|---|---|---|---|---|
1 | Tl2CdGeSe4 | 1020 | 0.966(750 K) | 0.634(800 K) | 0.60 |
2 | Tl2CdSnSe4 | 1019 | 0.947(750 K) | 0.415(800 K) | 0.408 |
3 | Tl2HgSiSe4 | −1020 | 0.915(550 K) | 0.945(800 K) | 0.934 |
4 | Tl2HgSnS4 | 1020, −1020 | 0.943(900 K), 0.853(900 K) | 1.49(850 K), 1.12(900 K) | 0.199, 1.18 |
5 | CuBS2 | 1020 | 0.933(900 K) | 1.88(750 K) | 1.77 |
6 | CuBSe2 | −1019 | 0.882(900 K) | 2.29(900 K) | 2.34 |
7 | CuBTe2 | 1019 | 0.951(900 K) | 1.57(850 K) | 1.48 |
8 | AuBSe2 | 1020, 1019 | 0.873(800 K), 0.889(650 K) | 3.72(800 K), 1.57(650 K) | 3.86, 1.7 |
9 | AuBTe2 | 1020 | 0.802(900 K) | 3.42(900 K) | 3.84 |
10 | AuAlTe2 | 1020 | 0.778(750 K) | 2.35(750 K) | 2.27 |
11 | AuGaTe2 | −1020, 1020 | 0.495(700 K), 0.55(400 K) | 3.85(700 K), 1.58(400 K), | 7.83, 5.87 |
12 | AuInTe2 | −1019, 1020 | 0.431(800 K), 0.536(400 K) | 3.25(800 K) | 7.57 |
13 | CuAlSe2 | 1018, 1019, 1020 | 0.944(750 K), 0.935(850 K), 0.888(900 K) | 0.38(750 K), 0.68(850 K), 2.15(900 K) | 0.353, 0.647, 2.18 |
14 | CuAlTe2 | −1018, 1018 | 0.952(800 K), 0.947(850 K), | 0.403(800 K), 0.577(850 K) | 0.381, 0.549 |
15 | AgAlSe2 | −1019, −1018, 1018 | 0.960(900 K), 0.956(900 K), 0.955(900 K) | 0.548(900 K), 0.748(900 K), 0.788(900 K) | 0.514, 0.705, 0.743 |
16 | AgAlTe2 | 1020, 1019 | 0.858(900 K), 0.977(250 K) | 2.04(900 K) | 2.14 |
17 | CuGaS2 | 1021, 1020 | 0.607(900 K), 0.910(500 K) | 5.48(900 K), 0.475(500 K) | 8.13, 0.855 |
18 | CuGaSe2 | 1020, −1019 | 0.688(600 K), 0.784(350 K) | 2.26(600 K), 0.831(350 K) | 3.77, 2.24 |
19 | CuGaTe2 | 1020, −1018, 1019 | 0.739(700 K), 0.885(300 K), 0.847(400 K) | 3.41(700 K), 0.352(300 K), 1.02(400 K) | 4.96, 2.96, 3.04 |
20 | AgGaS2 | −1020, −1019 | 0.865(900 K), 0.823(900 K) | 2.03(900 K), 2.81(900 K) | 2.11, 3.07 |
21 | AgGaSe2 | 1020 | 0.735(650 K) | 1.86(650 K) | 2.79 |
22 | AgGaTe2 | 1020, 1019 | 0.729(800 K), 0.824(400 K) | 2.86(900 K), 0.803(400 K) | 3.76, 1.76 |
23 | CuInS2 | 1021, 1020 | 0.633(900 K), 0.810(350 K) | 5.03(900 K), 1.21(350 K) | 7.16, 2.73 |
24 | CuInSe2 | 1021 | 0.541(900 K) | 4.67(900 K) | 7.78 |
25 | CuInTe2 | 1020 | 0.79(at 500 K) | 1.85(500 K) | 3.24 |
26 | AgInS2 | 1020, 1018, −1018 | 0.824(750 K), 0.945(300 K), 0.986(250 K) | 1.91(750 K), 0.151(300 K) | 2.19, 0.75, 0.76 |
27 | AgInSe2 | 1020 | 0.736(450 K) | 1.31(450 K) | 2.54 |
28 | AgInTe2 | 1020 | 0.794(600 K) | 1.97(600 K) | 2.81 |
29 | NaInSe2 | −1019, −1018, 1018, 1019 | 0.956(900 K), 0.948(900 K), 0.946(900 K), 0.94(900 K) | 0.308(900 K), 0.433(900 K), 0.457(900 K), 0.557(900 K) | 0.29, 0.411, 0.435, 0.533 |
30 | NaInTe2 | 1020 | 0.952(850 K) | 0.335(850 K) | 0.565 |
Crystal | n | ZT (Ours) | ZT |
---|---|---|---|
AgSbSe2 | 1020 | 0.898(750 K) | 0.41(650 K) [71], 0.65(675 K) [116] |
AgSbTe2 | 1019 | 0.924(750 K) | 1.2(650 K) [47], 0.9(675 K) [76] |
AgSb0.94Cd0.06Te2 | 9.0 × 1019 | 2.36(700 K) | 2.6(573 K) [46] |
AgSbTe1.85Se0.15 | 1020 | 2.39(700 K) | 2.1(575 K) [21,47] |
# | Crystal | Q* (in e−) |
---|---|---|
1 | AgSbSe2 | 10.971(Ag), 4.399(Sb), 6.315(Se) |
2 | AgSbTe2 | 11.102(Ag), 4.694(Sb), 6.102(Te) |
3 | AgSb0.94Cd0.06Te2 | 11.080(Ag), 4.748(Sb), 11.243(Cd), 6.102(Te) |
4 | AgSbTe1.85Se0.15 | 11.030(Ag), 4.712(Sb), 6.120(Te), 6.266(Se) |
CuGaSe2 | CuGaTe2 | ||||
---|---|---|---|---|---|
bond | BL(Å) | BO | bond | BL(Å) | BO |
Cu-Se | 2.4315 | 0.1916 | Cu-Te | 2.5937 | 0.2286 |
Ga-Se | 2.4746 | 0.2572 | Ga-Te | 2.6878 | 0.2709 |
AgInSe2 | AgInTe2 | ||||
bond | BL(Å) | BO | bond | BL(Å) | BO |
Ag-Se | 2.6727 | 0.1530 | Ag-Te | 2.8134 | 0.1814 |
In-Se | 2.6558 | 0.2384 | In-Te | 2.8603 | 0.2581 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, S.; San, S.; Baral, K.; Li, N.; Rulis, P.; Ching, W.-Y. First-Principles Calculations of Thermoelectric Transport Properties of Quaternary and Ternary Bulk Chalcogenide Crystals. Materials 2022, 15, 2843. https://doi.org/10.3390/ma15082843
Hasan S, San S, Baral K, Li N, Rulis P, Ching W-Y. First-Principles Calculations of Thermoelectric Transport Properties of Quaternary and Ternary Bulk Chalcogenide Crystals. Materials. 2022; 15(8):2843. https://doi.org/10.3390/ma15082843
Chicago/Turabian StyleHasan, Sahib, Saro San, Khagendra Baral, Neng Li, Paul Rulis, and Wai-Yim Ching. 2022. "First-Principles Calculations of Thermoelectric Transport Properties of Quaternary and Ternary Bulk Chalcogenide Crystals" Materials 15, no. 8: 2843. https://doi.org/10.3390/ma15082843
APA StyleHasan, S., San, S., Baral, K., Li, N., Rulis, P., & Ching, W. -Y. (2022). First-Principles Calculations of Thermoelectric Transport Properties of Quaternary and Ternary Bulk Chalcogenide Crystals. Materials, 15(8), 2843. https://doi.org/10.3390/ma15082843