Bibliometric Analysis of Artificial Intelligence in Textiles
Abstract
:1. Introduction
- What is the annual growth of publications in the field of artificial intelligence in textiles? What are their citation trends and usage counts in the database of Web of Science?
- How are the publications related to artificial intelligence in textiles distributed? What are the most influential countries, journals, and institutes?
- Which research group, country, and organization are most productive based on citations and bibliographies?
- What are the emerging topics related to artificial intelligence in textiles?
- How is the existing publication spread? What keywords are related to each other?
2. Data Collection and Research Methodology
2.1. Data Source
2.2. Bibliometric Methods
2.3. Inclusion and Exclusion Criteria
2.4. Data Analysis
3. Results and Discussion
3.1. Global Publications and Citation Output
3.2. Distribution of Publications
3.3. Subject Categories of Research Productivity
3.4. Co-Occurrence of Keywords in the Abstracts
3.4.1. Cluster 1 (Red): Artificial Intelligence for Textile Structures
3.4.2. Cluster 2 (Green): Artificial Intelligence for Textile Inspection
3.4.3. Cluster 3 (Blue): Artificial Intelligence for Textile and Apparel Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bowman, S.; Jiang, Q.; Memon, H.; Qiu, Y.; Liu, W.; Wei, Y. Effects of Styrene-Acrylic Sizing on the Mechanical Properties of Carbon Fiber Thermoplastic Towpregs and Their Composites. Molecules 2018, 23, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Memon, H.; Hassan, E.A.M.; Elagib, T.H.H.; Hassan, F.E.A.A.; Yu, M. Rheological and Dynamic Mechanical Properties of Abutilon Natural Straw and Polylactic Acid Biocomposites. Int. J. Polym. Sci. 2019, 2019, 8732520. [Google Scholar] [CrossRef]
- Yan, X.; Chen, L.; Memon, H. Introduction. In Textile and Fashion Education Internationalization: A Promising Discipline from South Asia; Yan, X., Chen, L., Memon, H., Eds.; Springer Singapore: Singapore, 2022; pp. 1–12. [Google Scholar]
- Wijayapala, U.G.S.; Alwis, A.A.P.; Ranathunga, G.M.; Karunaratne, P.V.M. Evolution of Sri Lankan Textile Education from Ancient Times to the 21st Century. In Textile and Fashion Education Internationalization: A Promising Discipline from South Asia; Yan, X., Chen, L., Memon, H., Eds.; Springer: Singapore, 2022; pp. 119–144. [Google Scholar]
- Siddiqui, M.Q.; Wang, H.; Memon, H. Cotton Fiber Testing. In Cotton Science and Processing Technology: Gene, Ginning, Garment and Green Recycling; Wang, H., Memon, H., Eds.; Springer: Singapore, 2020; pp. 99–119. [Google Scholar]
- Giri, C.; Jain, S.; Zeng, X.Y.; Bruniaux, P. A Detailed Review of Artificial Intelligence Applied in the Fashion and Apparel Industry. IEEE Access 2019, 7, 95376–95396. [Google Scholar] [CrossRef]
- Xizhen, L.; Zhiqin, S. Research on the knowledge map and visualization of fashion design field in China based on CiteSpace. J. Silk 2020, 57, 25–34. [Google Scholar] [CrossRef]
- Tian, M.; Li, J. Knowledge mapping of protective clothing research—A bibliometric analysis based on visualization methodology. Text. Res. J. 2018, 89, 3203–3220. [Google Scholar] [CrossRef]
- Kuilang, Y.; Qian, X. Research on the innovation frontier of global intelligent textile technology based on patentometrics. J. Silk 2021, 58, 48–55. [Google Scholar] [CrossRef]
- Xiang, F.; Xiaopeng, W.; Xiaoxiao, Q.; Laili, W. Bibliometric analysis of literatures on textile and clothing footprint based on CiteSpace. Adv. Text. Technol. 2022, 30, 9–17. [Google Scholar] [CrossRef]
- Li, Z.; Poon, H.; Chen, W.; Fan, J. A comparative analysis of textile schools by journal publications listed in Web of ScienceTM. J. Text. Inst. 2020, 112, 1472–1481. [Google Scholar] [CrossRef]
- Lis, A.; Sudolska, A.; Tomanek, M. Mapping Research on Sustainable Supply-Chain Management. Sustainability 2020, 12, 3987. [Google Scholar] [CrossRef]
- Geng, D.Y.; Feng, Y.T.; Zhu, Q.H. Sustainable design for users: A literature review and bibliometric analysis. Environ. Sci. Pollut. Res. 2020, 27, 29824–29836. [Google Scholar] [CrossRef]
- Baier-Fuentes, H.; Merigo, J.M.; Amoros, J.E.; Gaviria-Marin, M. International entrepreneurship: A bibliometric overview. Int. Entrep. Manag. J. 2019, 15, 385–429. [Google Scholar] [CrossRef]
- Mei, P.; Lizhu, G.; Zilin, K.; Lan, Z. Research review and prospects of VOSviewer-based textile plant dyeing. J. Silk 2021, 58, 53–59. [Google Scholar] [CrossRef]
- Noor, S.; Guo, Y.; Shah, S.H.H.; Halepoto, H. Bibliometric Analysis of Twitter Knowledge Management Publications Related to Health Promotion. In Proceedings of the 13th International Conference, Hangzhou, China, 28–30 August 2020; pp. 341–354. [Google Scholar]
- Syed Hamd Hassan, S.; Saleha, N.; Atif Saleem, B.; Habiba, H. Twitter Research Synthesis for Health Promotion: A Bibliometric Analysis. Iran. J. Public Health 2021, 50, 2283–2291. [Google Scholar] [CrossRef]
- Martinez-Lopez, F.J.; Merigo, J.M.; Gazquez-Abad, J.C.; Ruiz-Real, J.L. Industrial marketing management: Bibliometric overview since its foundation. Ind. Mark. Manag. 2020, 84, 19–38. [Google Scholar] [CrossRef]
- Verma, R.; Lobos-Ossandon, V.; Merigo, J.M.; Cancino, C.; Sienz, J. Forty years of applied mathematical modelling: A bibliometric study. Appl. Math. Model. 2021, 89, 1177–1197. [Google Scholar] [CrossRef]
- Mas-Tur, A.; Guijarro, M.; Carrilero, A. The Influence of the Circular Economy: Exploring the Knowledge Base. Sustainability 2019, 11, 19. [Google Scholar] [CrossRef] [Green Version]
- Flores-Sosa, M.; Avilés-Ochoa, E.; Merigó, J.M. Exchange rate and volatility: A bibliometric review. Int. J. Financ. Econ. 2022, 27, 1419–1442. [Google Scholar] [CrossRef]
- Kara, K.; Wang, Z.K.; Zhang, C.; Alonso, G. doppioDB 2.0: Hardware Techniques for Improved Integration of Machine Learning into Databases. Proc. Vldb Endow. 2019, 12, 1818–1821. [Google Scholar] [CrossRef]
- Lu, J.; Yang, H.; Min, D.; Do, M.N. Patch Match Filter: Efficient Edge-Aware Filtering Meets Randomized Search for Fast Correspondence Field Estimation. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1854–1861. [Google Scholar]
- Gahegan, M. Fourth paradigm GIScience? Prospects for automated discovery and explanation from data. Int. J. Geogr. Inf. Sci. 2020, 34, 21. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Gao, R.X.; Isaksson, A.J.; Landers, R.G.; Parisini, T.; Yuan, Y. State of AI-Based Monitoring in Smart Manufacturing and Introduction to Focused Section. IEEE/ASME Trans. Mechatron. 2020, 25, 2143–2154. [Google Scholar] [CrossRef]
- Dutta, S.; Jeong, H.; Yang, Y.Q.; Cadambe, V.; Low, T.M.; Grover, P. Addressing Unreliability in Emerging Devices and Non-von Neumann Architectures Using Coded Computing. Proc. IEEE 2020, 108, 1219–1234. [Google Scholar] [CrossRef]
- Jacobsen, B.N. Algorithms and the narration of past selves. Inf. Commun. Soc. 2020, 1–16. [Google Scholar] [CrossRef]
- Mair, M.; Brooker, P.; Dutton, W.; Sormani, P. Just what are we doing when we’re describing AI? Harvey Sacks, the commentator machine, and the descriptive politics of the new artificial intelligence. Qual. Res. 2021, 21, 341–359. [Google Scholar] [CrossRef]
- Croeser, S.; Eckersley, P.; Assoc Comp, M. Theories of Parenting and Their Application to Artificial Intelligence; Assoc Computing Machinery: New York, NY, USA, 2019; pp. 423–428. [Google Scholar]
- Huang, S.Y.; Wang, Q.Y.; Zhang, S.Y.; Yan, S.P.; He, X.M. Dynamic Context Correspondence Network for Semantic Alignment. In 2019 IEEE/CVF International Conference on Computer Vision; IEEE Computer Soc: Los Alamitos, CA, USA, 2019; pp. 2010–2019. [Google Scholar]
- Schmitt, J.; Hollick, M.; Roos, C.; Steinmetz, R. Adapting the User Context in Realtime: Tailoring Online Machine Learning Algorithms to Ambient Computing. Mob. Netw. Appl. 2008, 13, 583–598. [Google Scholar] [CrossRef]
- Phon-Amnuaisuk, S. Composing Using Heterogeneous Cellular Automata. In Applications of Evolutionary Computing, Proceedings; Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekart, A., Esparcia Alcazar, A.I., Farooq, M., Fink, A., Machado, P., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5484, pp. 547–556. [Google Scholar]
- Chen, Z.; Yu, J.; Zhu, Y.; Chen, Y.; Li, M. D3: Abnormal driving behaviors detection and identification using smartphone sensors. In Proceedings of the 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Seattle, WA, USA, 22–25 June 2015; pp. 524–532. [Google Scholar]
- Abolafia, M.Y. Narrative Construction as Sensemaking: How a Central Bank Thinks. Organ. Stud. 2010, 31, 349–367. [Google Scholar] [CrossRef] [Green Version]
- Lemasle, B.; Hanke, M.; Storm, J.; Bono, G.; Grebel, E.K. Atmospheric parameters of Cepheids from flux ratios with ATHOS: I. The temperature scale. Astron. Astrophys. 2020, 641, 15. [Google Scholar] [CrossRef]
- Leung, K.; Arechiga, N.; Pavone, M. Backpropagation for Parametric STL. In Proceedings of the 2019 30th IEEE Intelligent Vehicles Symposium, Paris, France, 9–12 June 2019; IEEE: New York, NY, USA, 2019; pp. 185–192. [Google Scholar]
- Morfino, V.; Rampone, S.; Weitschek, E. SP-BRAIN: Scalable and reliable implementations of a supervised relevance-based machine learning algorithm. Soft Comput. 2020, 24, 7417–7434. [Google Scholar] [CrossRef]
- Zheng, W.J.; Tynes, M.; Gorelick, H.; Mao, Y.; Cheng, L.; Hou, Y.T.; Assoc Comp, M. FlowCon: Elastic Flow Configuration for Containerized Deep Learning Applications. In Proceedings of the 48th International Conference on Parallel Processing, Kyoto, Japan, 5–8 August 2019; pp. 1–10. [Google Scholar]
- Huang, Z. Research on Spark Big Data Recommendation Algorithm under Hadoop Platform. IOP Conf. Ser. Earth Environ. Sci. 2019, 252, 1–6. [Google Scholar] [CrossRef]
- Niu, Z.J.; Tang, S.J.; He, B.S. An Adaptive Efficiency-Fairness Meta-Scheduler for Data-Intensive Computing. IEEE Trans. Serv. Comput. 2019, 12, 865–879. [Google Scholar] [CrossRef]
- Shyamasundar, L.B.; Prathuri, J.R. Processing and Analyzing Big Data Generated from Data Communication and Social Networks: In-terms of Performance Speed and Accuracy. In Proceedings of the 2019 PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS), Bangalore, India, 18 August 2019; pp. 1–2. [Google Scholar]
- Poblet, M.; Sierra, C. Understanding Help as a Commons. Int. J. Commons 2020, 14, 481–493. [Google Scholar] [CrossRef]
- Dobkin, B.H.; Dorsch, A. The Promise of mHealth: Daily Activity Monitoring and Outcome Assessments by Wearable Sensors. Neurorehabil. Neural Repair 2011, 25, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fang, Z.; Sun, X. Usage patterns of scholarly articles on Web of Science: A study on Web of Science usage count. Scientometrics 2016, 109, 917–926. [Google Scholar] [CrossRef]
- Kumar, A. Computer-Vision-Based Fabric Defect Detection: A Survey. IEEE Trans. Ind. Electron. 2008, 55, 348–363. [Google Scholar] [CrossRef]
- Ngan, H.Y.T.; Pang, G.K.H.; Yung, N.H.C. Automated fabric defect detection—A review. Image Vis. Comput. 2011, 29, 442–458. [Google Scholar] [CrossRef]
- Cai, Y.C.; Shen, J.; Ge, G.; Zhang, Y.Z.; Jin, W.Q.; Huang, W.; Shao, J.J.; Yang, J.; Dong, X.C. Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range. ACS Nano 2018, 12, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Peng, X.; Wang, Z.L. Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Adv. Mater. 2020, 32, 43. [Google Scholar] [CrossRef] [PubMed]
- Tasdemir, K.; Merenyi, E. Exploiting Data Topology in Visualization and Clustering Self-Organizing Maps. IEEE Trans. Neural Netw. 2009, 20, 549–562. [Google Scholar] [CrossRef]
- Patel, A.J.; Sottos, N.R.; Wetzel, E.D.; White, S.R. Autonomic healing of low-velocity impact damage in fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 360–368. [Google Scholar] [CrossRef]
- Jamali, N.; Sammut, C. Majority Voting: Material Classification by Tactile Sensing Using Surface Texture. IEEE Trans. Robot. 2011, 27, 508–521. [Google Scholar] [CrossRef]
- Ting, G.; Meiling, Z.; Lili, S.; Jing, L.; Jingxue, W. An algorithm for extracting inner and outer contours of Korean dress images. Adv. Text. Technol. 2022, 30, 197–207. [Google Scholar] [CrossRef]
- Jianxin, Z.; Gang, H.; Xiaojin, L. Research on measuring method of fabric luster based on computer vision. J. Silk 2021, 58, 62–68. [Google Scholar] [CrossRef]
- Yanmeng, W.; Peng, Q.; Wenguo, Z. Yarn diameter time series prediction based on piecewise polymerization and Kalman filter. Adv. Text. Technol. 2022, 30, 41–47. [Google Scholar] [CrossRef]
- Wang, H.; Halepoto, H.; Hussain, M.A.I.; Noor, S. Cotton Melange Yarn and Image Processing. In Cotton Science and Processing Technology: Gene, Ginning, Garment and Green Recycling; Wang, H., Memon, H., Eds.; Springer: Singapore, 2020; pp. 547–565. [Google Scholar]
- Shengbao, X.; Liaomo, Z.; Decheng, Y. A method for fabric defect detection based on improved cascade R-CNN. Adv. Text. Technol. 2022, 30, 48–56. [Google Scholar] [CrossRef]
- Min, L.; Shan, Y.; Ruhan, H.; Xun, Y.; Shuqin, C. Jacquard fabric defect detection technology combining context-awareness and convolutional neural network. Adv. Text. Technol. 2021, 29, 62–66. [Google Scholar] [CrossRef]
- Danshu, W.; Yali, Y.; Li, Y. Colored spun fabric pattern recognition based on multi resolution mixed characteristics. J. Silk 2021, 58, 27–32. [Google Scholar] [CrossRef]
Document Type | Article | Proceedings Paper | Early Access | Review |
---|---|---|---|---|
Records | 649 | 343 | 24 | 21 |
Rate % | 65.161 | 34.438 | 2.41 | 2.108 |
No. | Title | Journal | Year | Time Cited | Usage Count | Reference | |
---|---|---|---|---|---|---|---|
WoS Core | WoS | Since 2013 | |||||
1 | Computer-vision-based fabric defect detection: A survey | IEEE Trans. Ind. Electron. | 2008 | 312 | 356 | 230 | [45] |
2 | Automated fabric defect detection-A review | Image Vis. Comput. | 2011 | 208 | 240 | 168 | [46] |
3 | Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range | ACS Nano | 2018 | 175 | 177 | 934 | [47] |
4 | Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence | Adv. Mater. | 2020 | 118 | 119 | 864 | [48] |
5 | Exploiting Data Topology in Visualization and Clustering Self-Organizing Maps | IEEE Trans. Ind. Electron. | 2009 | 115 | 116 | 17 | [49] |
6 | Autonomic healing of low-velocity impact damage in fiber-reinforced composites | Compos. Part-A Appl. Sci. Manuf. | 2010 | 108 | 109 | 64 | [50] |
7 | Majority Voting: Material Classification by Tactile Sensing Using Surface Texture | IEEE Trans. Robot. | 2011 | 98 | 100 | 37 | [51] |
No. | Name of University | Number of Publications | Rate (%) |
---|---|---|---|
1 | Donghua University | 51 | 5.115 |
2 | Jiangnan University | 41 | 4.112 |
3 | Isfahan University Technology | 32 | 3.21 |
4 | Soochow University | 25 | 2.508 |
5 | Hong Kong Polytech University | 24 | 2.407 |
6 | Shanghai University Engineering and Science | 22 | 2.207 |
7 | Amirkabir University Technology | 21 | 2.106 |
8 | University Lille Nord France | 13 | 1.304 |
9 | ENSAIT | 12 | 1.204 |
10 | RWTH Aachen | 12 | 1.204 |
11 | University of Minho | 12 | 1.204 |
12 | Indian Institute of Technology | 11 | 1.103 |
13 | Technical University of Liberec | 11 | 1.103 |
14 | Tiangong University | 11 | 1.103 |
15 | Xian Polytech University | 11 | 1.103 |
16 | Other | 687 | 69.007 |
No. | Name of Journal | Number of Publications | Impact Factor | Rate (%) |
---|---|---|---|---|
1 | Journal of the Textile Institute | 73 | 1.239 | 7.322 |
2 | Textile Research Journal | 59 | 1.66 | 5.918 |
3 | Fibres Textiles in Eastern Europe | 29 | 0.76 | 2.909 |
4 | Fibers and Polymers | 23 | 1.59 | 2.307 |
5 | Advanced Materials Research | 21 | -- | 2.106 |
6 | Proceedings of SPIE | 20 | 0.56 | 2.006 |
7 | International Journal of Clothing Science and Technology | 19 | 0.92 | 1.906 |
8 | Indian Journal of Fibre Textile Research | 18 | 0.6 | 1.805 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halepoto, H.; Gong, T.; Noor, S.; Memon, H. Bibliometric Analysis of Artificial Intelligence in Textiles. Materials 2022, 15, 2910. https://doi.org/10.3390/ma15082910
Halepoto H, Gong T, Noor S, Memon H. Bibliometric Analysis of Artificial Intelligence in Textiles. Materials. 2022; 15(8):2910. https://doi.org/10.3390/ma15082910
Chicago/Turabian StyleHalepoto, Habiba, Tao Gong, Saleha Noor, and Hafeezullah Memon. 2022. "Bibliometric Analysis of Artificial Intelligence in Textiles" Materials 15, no. 8: 2910. https://doi.org/10.3390/ma15082910
APA StyleHalepoto, H., Gong, T., Noor, S., & Memon, H. (2022). Bibliometric Analysis of Artificial Intelligence in Textiles. Materials, 15(8), 2910. https://doi.org/10.3390/ma15082910