A Green High-Performance Thin-Layer Chromatography Method for the Determination of Caffeine in Commercial Energy Drinks and Formulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chromatography and Analytical Conditions
2.3. Preparation of Caffeine Standard Solutions for Calibration and Quality Control (QC) Samples
2.4. Sample Processing of Caffeine from Marketed ED
2.5. Processing of Samples for the Determination of Caffeine in Marketed Herbal Products
2.6. Validation Parameters
2.7. Determination of Caffeine in Marketed ED and Herbal Products
2.8. Greenness Assessment
3. Results and Discussion
3.1. Method Development
3.2. Validation Parameters
3.3. Determination of Caffeine in Marketed ED and Herbal Products
3.4. Greenness Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shakeel, F.; Ramadan, W. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf. B 2010, 75, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Abourashed, E.A.; Mossa, J.S. HPTLC determination of caffeine in stimulant herbal products and power drinks. J. Pharm. Biomed. Anal. 2004, 36, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Faudone, G.; Arifi, S.; Merk, D. The medicinal chemistry of caffeine. J. Med. Chem. 2021, 64, 7156–7178. [Google Scholar] [CrossRef]
- Nimbhorkar, R.; Rasane, P.; Singh, J. Caffeine alternatives: Seraching a herbal solution. Pharm. Innov. J. 2021, 10, 256–264. [Google Scholar] [CrossRef]
- Rahimi, M.; Khorshidi, N.; Heydari, R. Simultaneous determination of paracetamol and caffeine in aqueous samples by ultrasound-assisted emulsification microextraction coupled with high-performance liquid chromatography. Sep. Sci. Plus 2020, 3, 561–570. [Google Scholar] [CrossRef]
- Tautua, A.; Bamidele, W.; Diepreye, E.R.E. Ultra-violet spectrophotometric determination of caffeine in soft and energy drinks available in Yenagoa, Nigeria. Adv. J. Food Sci. Technol. 2014, 6, 155–158. [Google Scholar] [CrossRef]
- Khalid, A.; Ahmad, S.; Raza, H.; Batool, M.; Lodhi, R.K.; Ain, Q.T.; Naseer, F. Determination of caffeine in soft and energy drinks available in market by using UV/visible specrtophotometer. Fam. Med. Med. Sci. Res. 2016, 5, E1000206. [Google Scholar] [CrossRef] [Green Version]
- Ogunneye, A.L.; Banjoko, O.O.; Gbadamosi, M.R.; Falegbe, O.H.; Moberuagba, K.H.; Badejo, O.A. Spectrophotometric determination of caffeine and vitamin B6 in selected beverages, energy/soft drinks and herbal products. Niger. J. Basic Appl. Sci. 2020, 28, 22–29. [Google Scholar] [CrossRef]
- Deasi, S. Estimation of caffeine content from soft and energy drinks obtained from regional markets by UV spectroscopy and TLC. Int. J. Sci. Dev. Res. 2020, 5, 96–104. [Google Scholar]
- Vuletic, N.; Bardic, L.; Odzak, R. Spectrophotometric determination of caffeine content in the selection of teas, soft and energy drinks available on the Croatian market. Food Res. 2021, 5, 325–330. [Google Scholar] [CrossRef]
- Kaurav, M.G.; Kihunyu, J.N.; Kathenyal, N.M.; Wangai, L.N.; Kariuki, D.; Kibet, R.H. Determination of caffeine content in non-alcoholic beverages and energy drinks using HPLC-UV method. Afr. J. Drug Alcohol Stud. 2010, 9, 15–21. [Google Scholar]
- Nour, Y.; Trandafir, I.; Ionica, M.E. Chromatographic determination of caffeine contents in soft and energy drinks available on the Romanian market. St. Cerc. St. CICBIA 2010, 11, 351–358. [Google Scholar]
- Ali, M.M.; Eisa, M.; Taha, M.I.; Zakaria, B.A.; Elbashir, A.A. Determination of caffeine in some Sudanese beverages by high performance liquid chromatography. Pak. J. Nutr. 2012, 11, 336–342. [Google Scholar]
- Rudolph, E.; Farbinger, A.; Konig, J. Determination of caffeine contents of various food items within the Austrian market and validation of a caffeine assessment tool (CAT). Food Addit. Contam. Part A 2012, 29, 1849–1860. [Google Scholar] [CrossRef]
- Al-Othman, Z.A.; Aqel, A.; Alharbi, M.K.E.; Badjah-Hadj-Ahmed, A.Y.; Al-Warthan, A.A. Fast chromatographic determination of caffeine in food using a capillary hexyl methacrylate monolithic column. Food Chem. 2012, 132, 2217–2223. [Google Scholar] [CrossRef]
- Gliszczynska-Swiglo, A.; Rybicka, I. Simultaneous determination of caffeine and water-soluble vitamins in energy drinks by HPLC with photodiode array and fluorescence detection. Food Anal. Methods 2015, 8, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Rai, K.P.; Rai, H.B.; Dahal, S.; Chaudhary, S.; Shrestha, S. Determination of caffeine and taurine in energy drinks by HPLC-UV. J. Food Sci. Technol. Nepal 2016, 9, 66–73. [Google Scholar] [CrossRef]
- Mirza, J.; Sultana, M.; Esrafil, M.; Akter, S.; Alam, M.J.; Khan, M.S.H.; Zubair, M.A. High-performance liquid chromatographic method for quantitative determination of caffeine in different soft and energy drinks available in Bangladesh. Curr. Res. Nutr. Food Sci. 2021, 9, 1081–1089. [Google Scholar] [CrossRef]
- Medina, I.Y.; Rodriguez, D.C.; Parra, J.W. Analysis of caffeine in energy drinks by ultra-fast liquid chromatography. J. Phys. Conf. Ser. 2020, 1587, E012024. [Google Scholar] [CrossRef]
- Lee, M.S.; Huong, N.L.; Hoang, N.H.; Shresthan, A.; Park, J.W. Ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry for the determination of caffeine in energy drinks. Anal. Lett. 2014, 47, 1852–1861. [Google Scholar] [CrossRef]
- Mohammed, S.G.; Al-Hashimi, A.G.; Al-Hussainy, K.S. Determination of caffeine and trace mineral contents in soft and energy drinks available in Basrah markets. Pak. J. Nutr. 2012, 11, 845–848. [Google Scholar] [CrossRef] [Green Version]
- Torres, J.L.T.; Hiley, S.L.; Lorimor, S.P.; Rhoad, J.S.; Caldwell, B.D.; Zweerink, G.L.; Ducey, M. Separation of caffeine from beverages and analysis using thin-layer chromatography and gas chromatography-mass spectrometry. J. Chem. Educ. 2015, 92, 900–902. [Google Scholar] [CrossRef]
- Al-Bratty, M.; Alhazmi, H.A.; Rehman, Z.U.; Javed, S.A.; Ahsan, W.; Najmi, A.; Khuwaja, G.; Makeen, H.A.; Khalid, A. Determination of caffeine content in commercial energy beverages available in Saudi Arabian market by gas chromatography-mass spectrometric analysis. J. Spectrosc. 2020, 2020, E3716343. [Google Scholar] [CrossRef]
- Tavallali, H.; Zareiyan, S.F.J.; Naghian, M. An efficient and simultaneous analysis of caffeine and paracetamol in pharmaceutical formulations using TLC with a fluorescence plate reader. J. AOAC Int. 2011, 94, 1094–1099. [Google Scholar] [CrossRef] [Green Version]
- Riswanto, F.D.O.; Lukitaningsih, R.R.E.; Martono, S. Analytical method validation and determination of pyridoxine, nicotinamide, and caffeine, in energy drinks using thin layer chromatography-densitometry. Indones. J. Chem. 2015, 15, 9–15. [Google Scholar] [CrossRef]
- Oellig, C.; Schunck, J.; Schwack, W. Determination of caffeine, theobromine and theophylline in mate beer and mate soft drinks by high-performance thin-layer chromatography. J. Chromatogr. A 2018, 1533, 208–212. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; de la Guardia, M. Solid-phase FT-Raman determination of caffeine in energy drinks. Anal. Chim. Acta 2005, 547, 197–203. [Google Scholar] [CrossRef]
- Grant, D.C.; Helleur, R.J. Simultaneous analysis of vitamins and caffeine in energy drinks by surfactant-mediated matrix-assisted laser desorption/ionization. Anal. Bioanal. Chem. 2008, 391, 2811–2818. [Google Scholar] [CrossRef]
- Liotta, E.; Gottardo, S.; Seri, C.; Rimondo, C.; Miksik, I.; Serpelloni, G.; Tagliaro, F. Rapid analysis of caffeine in “smart drugs” and “energy drinks” by microemulsion electrokinetic chromatography (MEEKC). Forensic Sci. Int. 2012, 220, 279–283. [Google Scholar] [CrossRef]
- Vochyanova, B.; Opekar, F.; Tuma, P. Simultaneous and rapid determination of caffeine and taurine in energy drinks by MEKC in a short capillary with dual contactless conductivity/photometry detection. Electrophoresis 2014, 35, 1660–1665. [Google Scholar] [CrossRef]
- Alam, P.; Shakeel, F.; Ali, A.; Alqarni, M.H.; Foudah, A.I.; Aljarba, T.M.; Alkholifi, F.K.; Alshehri, S.; Ghoneim, M.M.; Ali, A. Simultaneous determination of caffeine and paracetamol in commercial formulations using greener normal-phase and reversed-phase HPTLC methods: A contrast of validation parameters. Molecules 2022, 27, 405. [Google Scholar] [CrossRef]
- Ibrahim, F.A.; Elmansi, H.; Fathy, M.E. Green RP-HPLC method for simultaneous determination of moxifloxacin combinations: Investigation of the greenness for the proposed method. Microchem. J. 2019, 148, 151–161. [Google Scholar] [CrossRef]
- Abou-Taleb, N.H.; Al-Enany, N.M.; El-Sherbiny, D.T.; El-Subbagh, H.I. Digitally enhanced thin layer chromatography for simultaneous determination of norfloxacin tinidazole with the aid of Taguchi orthogonal array and desirability function approach: Greenness assessment by analytical eco-scale. J. Sep. Sci. 2020, 43, 1195–1202. [Google Scholar] [CrossRef]
- Foudah, A.I.; Shakeel, F.; Alqarni, M.H.; Ali, A.; Alshehri, S.; Ghoneim, M.M.; Alam, P. Determination of thymol in commercial formulations, essential oils, traditional, and ultrasound-based extracts of Thymus vulgaris and Origanum vulgare using a greener HPTLC approach. Molecules 2022, 27, 1164. [Google Scholar] [CrossRef]
- Alqarni, M.H.; Shakeel, F.; Mahdi, W.A.; Foudah, A.I.; Aljarba, T.M.; Alshehri, S.; Ghoneim, M.M.; Alam, P. A greener stability-indicating high-performance thin-layer chromatography approach for the estimation of topiramate. Materials 2022, 15, 1731. [Google Scholar] [CrossRef]
- Abdelrahman, M.M.; Abdelwahab, N.S.; Hegazy, M.A.; Fares, M.Y.; El-Sayed, G.M. Determination of the abused intravenously administered madness drops (tropicamide) by liquid chromatography in rat plasma; an application to pharmacokinetic study and greenness profile assessment. Microchem. J. 2020, 159, 105582. [Google Scholar] [CrossRef]
- Duan, X.; Liu, X.; Dong, Y.; Yang, J.; Zhang, J.; He, S.; Yang, F.; Wang, Z.; Dong, Y. A green HPLC method for determination of nine sulfonamides in milk and beef, and its greenness assessment with analytical eco-scale and greenness profile. J. AOAC Int. 2020, 103, 1181–1189. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE-Analytical GREEnness metric approach and software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Nowak, P.M.; Koscielniak, P. What color is your method? Adaptation of the RGB additive color model to analytical method evaluation. Anal. Chem. 2019, 91, 10343–10352. [Google Scholar] [CrossRef]
- Karmaker, R.; Sinha, D.; Sinha, U.B. Rationalizing between the efficiency and greenness of solvents—A computational study of their influence on TBATB. Sustain. Chem. Pharm. 2021, 20, 100387. [Google Scholar] [CrossRef]
- Kim, D.; Nunes, S.P. Green solvents for membrane manufacture: Recent trends and perspectives. Curr. Opin. Green Sustain. Chem. 2021, 28, 100427. [Google Scholar] [CrossRef]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; McElroy, C.R.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Processes 2016, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Foudah, A.I.; Shakeel, F.; Alqarni, M.H.; Ross, S.A.; Salkini, M.A.; Alam, P. Green NP-HPTLC and green RP-HPTLC methods for the determination of thymoquinone: A contrast of validation parameters and greenness assessment. Phytochem. Anal. 2022, 33, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Q2 (R1) validation of analytical procedures–text and methodology. In Proceedings of the International Conference on Harmonization (ICH), Geneva, Switzerland, 1–13 November 2005.
- Foudah, A.I.; Shakeel, F.; Alqarni, M.H.; Alam, P. A rapid and sensitive stability-indicating RP-HPTLC method for the quantitation of flibanserin compared to green NP-HPTLC method: Validation studies and greenness assessment. Microchem. J. 2021, 164, 105960. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Linearity range (ng band−1) | 50–800 |
Regression equation | y = 28.429x + 813.89 |
R2 | 0.9973 |
R | 0.9986 |
SE of slope | 0.35 |
SE of intercept | 2.42 |
95% CI of slope | 26.90–29.95 |
95% CI of intercept | 803.45–824.32 |
LOD ± SD (ng band−1) | 16.87 ± 0.45 |
LOQ ± SD (ng band−1) | 50.61 ± 1.35 |
Parameters | Green HPTLC Method |
---|---|
Rf | 0.42 ± 0.01 |
As | 1.06 ± 0.02 |
N m−1 | 5241 ± 4.58 |
Conc. (ng Band−1) | Conc. Found (ng Band−1) ± SD | Recovery (%) | CV (%) |
---|---|---|---|
100 | 98.52 ± 1.36 | 98.5 | 1.38 |
500 | 508.23 ± 3.54 | 101.6 | 0.69 |
800 | 788.36 ± 6.94 | 98.5 | 0.88 |
Conc. (ng Band−1) | Intraday Precision | Interday Precision | ||||
---|---|---|---|---|---|---|
Conc. Found (ng Band−1) ± SD | Standard Error | CV (%) | Conc. Found (ng Band−1) ± SD | Standard Error | CV (%) | |
100 | 101.45 ± 0.84 | 0.34 | 0.82 | 99.21 ± 0.92 | 0.37 | 0.92 |
500 | 494.31 ± 3.11 | 1.26 | 0.62 | 491.23 ± 3.53 | 1.44 | 0.71 |
800 | 792.34 ± 4.74 | 1.93 | 0.59 | 806.32 ± 5.15 | 2.10 | 0.63 |
Conc. (ng Band−1) | Mobile Phase Composition (EtOH-Water) | Results | ||||
---|---|---|---|---|---|---|
Original | Used | Conc. (ng Band−1) ± SD | CV (%) | Rf | ||
57:43 | +2.0 | 492.54 ± 3.22 | 0.65 | 0.41 | ||
500 | 55:45 | 55:45 | 0.0 | 504.51 ± 3.66 | 0.72 | 0.42 |
53:47 | −2.0 | 511.21 ± 3.97 | 0.77 | 0.43 |
Samples | Label Content of Caffeine (mg 100 mL−1) | Caffeine Found (mg 100 mL−1) | Percent of Label Amount |
---|---|---|---|
ED1 | 30 | 30.52 ± 1.01 | 98.2 |
ED2 | 30 | 29.19 ± 1.00 | 102.7 |
ED3 | 32 | 31.21 ± 1.03 | 102.5 |
ED4 | 32 | 32.89 ± 1.04 | 97.2 |
ED5 | 30 | 28.08 ± 1.01 | 106.8 |
ED6 | 20 | 21.02 ± 0.80 | 95.1 |
ED7 | 32 | 31.88 ± 2.02 | 100.3 |
ED8 | 30 | 29.98 ± 1.01 | 100.0 |
ED9 | 35 | 37.52 ± 2.01 | 93.2 |
ED10 | 35 | 35.93 ± 2.04 | 97.3 |
F1 | 10 | 10.63 ± 0.50 | 94.0 |
F2 | 20 | 20.30 ± 0.60 | 98.4 |
F3 | 15 | 15.92 ± 0.65 | 94.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foudah, A.I.; Shakeel, F.; Salkini, M.A.; Alshehri, S.; Ghoneim, M.M.; Alam, P. A Green High-Performance Thin-Layer Chromatography Method for the Determination of Caffeine in Commercial Energy Drinks and Formulations. Materials 2022, 15, 2965. https://doi.org/10.3390/ma15092965
Foudah AI, Shakeel F, Salkini MA, Alshehri S, Ghoneim MM, Alam P. A Green High-Performance Thin-Layer Chromatography Method for the Determination of Caffeine in Commercial Energy Drinks and Formulations. Materials. 2022; 15(9):2965. https://doi.org/10.3390/ma15092965
Chicago/Turabian StyleFoudah, Ahmed I., Faiyaz Shakeel, Mohammad A. Salkini, Sultan Alshehri, Mohammed M. Ghoneim, and Prawez Alam. 2022. "A Green High-Performance Thin-Layer Chromatography Method for the Determination of Caffeine in Commercial Energy Drinks and Formulations" Materials 15, no. 9: 2965. https://doi.org/10.3390/ma15092965
APA StyleFoudah, A. I., Shakeel, F., Salkini, M. A., Alshehri, S., Ghoneim, M. M., & Alam, P. (2022). A Green High-Performance Thin-Layer Chromatography Method for the Determination of Caffeine in Commercial Energy Drinks and Formulations. Materials, 15(9), 2965. https://doi.org/10.3390/ma15092965