The Preparation of Amorphous ZrC/Nanocrystalline Ni Multilayers and the Resistance to He+ Irradiation
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Sample Preparation
2.2. Ion Irradiation and Characterization
3. Results and Discussion
3.1. Original Structure Characterization
3.2. He+ Irradiation Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Terrani, K.A. Accident tolerant fuel cladding development: Promise, status, and challenges. J. Nucl. Mater. 2018, 501, 13–30. [Google Scholar] [CrossRef]
- Wu, X.; Kozlowski, T.; Hales, J.D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions. Ann. Nucl. Energy 2015, 85, 763–775. [Google Scholar] [CrossRef]
- He, Y.; Shirvan, K.; Wu, Y.; Su, G. Integrating a multi-layer deformation model in FRAPTRAN for accident Tolerant fuel analysis. Ann. Nucl. Energy 2019, 133, 441–454. [Google Scholar] [CrossRef]
- Harp, J.M.; Lessing, P.A.; Hoggan, R.E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation. J. Nucl. Mater. 2015, 466, 728–738. [Google Scholar] [CrossRef] [Green Version]
- Deck, C.P.; Jacobsen, G.M.; Sheeder, J.; Gutierrez, O.; Zhang, J.; Stone, J.; Khalifa, H.E.; Back, C.A. Characterization of SiC-SiC composites for accident tolerant fuel cladding. J. Nucl. Mater. 2015, 466, 667–681. [Google Scholar] [CrossRef]
- Park, D.; Mouche, P.A.; Zhong, W.; Mandapaka, K.K.; Was, G.S.; Heuser, B.J. TEM/STEM study of Zircaloy-2 with protective FeAl (Cr) layers under simulated BWR environment and high-temperature steam exposure. J. Nucl. Mater. 2018, 502, 95–105. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, J.; Dong, Q.; Ba, Z.; Wu, Y. Corrosion behavior and mechanical degradation of as-extruded Mg-Gd-Zn-Zr alloys for orthopedic application. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 698–708. [Google Scholar] [CrossRef]
- He, R.; Li, K.; Gu, S.; Liu, Q. Comparing ablation properties of NbC and NbC-25 mol.% ZrC coating on SiC-coated C/C composites. Ceram. Int. 2020, 46, 7055–7064. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, S.; Liu, S. Atomistic simulation on mechanical behaviors of Al/SiC nanocomposites. In Proceedings of the 2017 18th International Conference on Electronic Packaging Technology (ICEPT), Harbin, China, 16–19 August 2017. [Google Scholar]
- Chen, H.; Lin, Y. Epitaxial growth of superlattice YbGaO3(ZnO)5 and InGaO3(ZnO)5 films by the combination of sputtering and reactive solid phase epitaxy. Thin Solid Films 2013, 545, 33–37. [Google Scholar] [CrossRef]
- Zhao, L.; Li, C.; Zhang, X.; Bandaru, S.; Su, K.; Liu, X.; Zhou, Q.; Li, L.; Greneche, J.M.; Jin, J.; et al. Effects of Sm content on the phase structure, microstructure and magnetic properties of the SmxZr0.2(Fe0.8Co0.2)11.5Ti0.5 (x = 0.8–1.4) alloys. J. Alloys Compd. 2020, 828, 154428. [Google Scholar] [CrossRef]
- Yu, K.Y.; Sun, C.; Chen, Y.; Liu, Y.; Wang, H.; Kirk, M.A.; Li, M.; Zhang, X. Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: An in situ study. Philos. Mag. 2013, 93, 3547–3562. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Fu, E.G.; Sun, C.; Yu, K.Y.; Song, M.; Li, J.; Wang, Y.Q.; Wang, H.; Zhang, X. Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers. Acta Mater. 2015, 84, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Fu, E.G.; Wang, H.; Carter, J.J.; Shao, L.; Maloy, S.A.; Misra, A.; Zhang, X. He ion irradiation damage in Fe/W nanolayer films. J. Nucl. Mater. 2009, 389, 233–238. [Google Scholar] [CrossRef]
- Brandt, L.R.; Salvati, E.; Wermeille, D.; Papadaki, C.; Bourhis, E.L.; Korsunsky, A.M. Stress-Assisted Thermal Diffusion Barrier Breakdown in Ion Beam Deposited Cu/W Nano-Multilayers on Si Substrate Observed by in Situ GISAXS and Transmission EDX. ACS Appl Mater. Interfaces. 2021, 13, 6795–6804. [Google Scholar] [CrossRef]
- Li, N.; Nastasi, M.; Misra, A. Defect structures and hardening mechanisms in high dose helium ion implanted Cu and Cu/Nb multilayer thin films. Int. J. Plast. 2012, 32–33, 1–16. [Google Scholar] [CrossRef]
- Li, S.; Pastewka, L.; Gumbsch, P. Glass formation by severe plastic deformation of crystalline Cu/Zr nano-layers. Acta Mater. 2019, 165, 577–586. [Google Scholar] [CrossRef]
- Zhang, J.W.; Leu, B.; Kumar, M.A.; Beyerlein, I.J.; Han, W.Z. Twin hopping in nanolayered Zr-2.5Nb. Mater. Res. Lett. 2020, 8, 307–313. [Google Scholar] [CrossRef]
- Daghbouj, N.; Sen, H.S.; Callisti, M.; Vronka, M.; Karlik, M.; Duchoň, J.; Čech, J.; Havránek, V.; Polcar, T. Revealing nanoscale strain mechanisms in ion-irradiated multilayers. Acta Mater. 2022, 229, 117807. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Zhang, J.Y.; Li, J.; Wang, Y.Q.; Wu, K.; Liu, G.; Zhang, G.J.; Sun, J. Phase transformation-induced strength softening in Ti/Ta nanostructured multilayers: Coherent interface vs. phase boundary. Mater. Sci. Eng. A 2017, 684, 78–83. [Google Scholar] [CrossRef]
- Rajput, P.; Kumar, M.; Singh, U.B.; Potdar, S.; Gome, A.; Reddy, V.R.; Bhattacharyya, D.; Jha, S.N.; Khan, S.A.; Singh, F. Interface modification of Fe/Cr/Al magnetic multilayer by swift heavy ion irradiation. Surf. Interfaces 2021, 26, 101431. [Google Scholar] [CrossRef]
- Fu, E.; Misra, A.; Wang, H.; Shao, L.; Zhang, X. Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers. J. Nucl. Mater. 2010, 407, 178–188. [Google Scholar] [CrossRef]
- Li, N.; Martin, M.; Anderoglu, O.; Misra, A.; Shao, L.; Wang, H.; Zhang, X. He ion irradiation damage in Al/Nb multilayers. J. Appl. Phys. 2009, 105, 123522. [Google Scholar] [CrossRef]
- Guo, Z.B.; Mi, W.B.; Li, J.Q.; Cheng, Y.; Zhang, X.X. Enhancement in anomalous Hall resistivity of Co/Pd multilayer and CoPd alloy by Ga+ ion irradiation. EPL Europhys. Lett. 2014, 105, 46005. [Google Scholar] [CrossRef]
- Chen, F.; Tang, X.; Huang, H.; Liu, J.; Li, H.; Qiu, Y.; Chen, D. Surface damage and mechanical properties degradation of Cr/W multilayer films irradiated by Xe20+. Appl. Surf. Sci. 2015, 357, 1225–1230. [Google Scholar] [CrossRef]
- Taylor, C.A.; Lang, E.; Kotula, P.G.; Goeke, R.; Snow, C.S.; Wang, Y.; Hattar, K. Helium Bubbles and Blistering in a Nanolayered Metal/Hydride Composite. Materials 2021, 14, 5393. [Google Scholar] [CrossRef]
- Su, Q.; Wang, T.; Gigax, J.; Shao, L.; Nastasi, M. Resistance to Helium Bubble Formation in Amorphous SiOC/Crystalline Fe Nanocomposite. Materials 2019, 12, 93. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Suh, Y.J. Temperature- and pressure-dependent elastic properties, thermal expansion ratios, and minimum thermal conductivities of ZrC, ZrN, and Zr(C0.5N0.5). Ceram. Int. 2017, 43, 12968–12974. [Google Scholar] [CrossRef]
- Nino, A.; Izu, Y.; Sekine, T.; Sugiyama, S.; Taimatsu, H. Effects of ZrC and SiC addition on the microstructures and mechanical properties of binderless WC. Int. J. Refract. Hard Met. 2017, 69, 259–265. [Google Scholar] [CrossRef]
- Sun, W.; Xiong, X.; Huang, B.; Li, G.; Zhang, H.; Chen, Z.; Zheng, X. ZrC ablation protective coating for carbon/carbon composites. Carbon 2009, 47, 3368–3371. [Google Scholar] [CrossRef]
- Yang, J.; Wang, M.X.; Kang, Y.B.; Li, D. Influence of bilayer periods on structural and mechanical properties of ZrC/ZrB2 superlattice coatings. Appl. Surf. Sci. 2007, 253, 5302–5305. [Google Scholar] [CrossRef]
- Ma, C.; Wang, S.C.; Walsh, F.C. Electrodeposition of nanocrystalline nickel-cobalt binary alloy coatings: A review. Trans. Inst. Met. Finish. 2015, 93, 104–112. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Zhao, H.; Yan, Q. Adsorption and Fenton-like removal of chelated nickel from Zn-Ni alloy electroplating wastewater using activated biochar composite derived from Taihu blue algae. Chem. Eng. J. 2020, 379, 122372. [Google Scholar] [CrossRef]
- Trinkaus, H.; Singh, B.N. Helium accumulation in metals during irradiation—Where do we stand? J. Nucl. Mater. 2003, 323, 229–242. [Google Scholar] [CrossRef]
- Yang, L.; Ge, H.; Zhang, J.; Xiong, T.; Jin, Q.; Zhou, Y.; Shao, X.; Zhang, B.; Zhu, Z.; Zheng, S.; et al. High He-ion irradiation resistance of CrMnFeCoNi high-entropy alloy revealed by comparison study with Ni and 304SS. J. Mater. Sci. Technol. 2019, 33, 300–305. [Google Scholar] [CrossRef]
- Zheng, M.J.; Szlufarska, I.; Morgan, D. Ab initio prediction of threshold displacement energies in ZrC. J. Nucl. Mater. 2016, 471, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Naundorf, V.; Macht, M.P. Point defect sinks in self-ion-irradiated nickel: A self-diffusion investigation. J. Appl. Phys. 1988, 64, 3445–3455. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Gött. 1918, 2, 98–100. [Google Scholar]
- Langford, J.I.; Wilson, A.J.C. Seherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Cryst. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Wei, L.S.; Chen, N.; He, K.; Tao, Q. Preparation and mechanism analysis of polycrystalline silicon thin films with preferred orientation on graphite substrate. J. Mater. Sci. Mater. Electron. 2018, 29, 1377–1383. [Google Scholar] [CrossRef]
- Monshi, A.; Foroughi, M.R.; Monshi, M.R. Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. J. Nanosci. Nanotechnol. 2012, 2, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.L.; Geyer, U.; Schneider, S.; von Minnigerode, G. Grain sizes of Ni films measured by STM and X-ray methods. Thin Solid Films 1997, 292, 184–188. [Google Scholar] [CrossRef]
- van der Drift, A. Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 1967, 22, 267–288. [Google Scholar]
- Thijssen, J.M. Simulations of Polycrystalline Growth in 2+1 Dimensions. Phys. Rev. B 1995, 51, 1985–1988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulmaa, A.; Cougnon, F.G.; Dedoncker, R.; Depla, D. On the grain size-thickness correlation for thin films. Acta Mater. 2021, 212, 116896. [Google Scholar] [CrossRef]
- Thompson, C.V. Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 2000, 30, 159–190. [Google Scholar] [CrossRef]
- Smereka, P.; Li, X.; Russo, G.; Srolovitz, D.J. Simulation of faceted film growth in three dimensions: Microstructure, morphology and texture. Acta Mater. 2005, 53, 1191–1204. [Google Scholar] [CrossRef]
- Wendler, F.; Mennerich, C.; Nestler, B. A phase-field model for polycrystalline thin film growth. J. Cryst. Growth 2011, 327, 189–201. [Google Scholar] [CrossRef]
- Ouchani, S.; Dran, J.C.; Chaumont, J. Evidence of ionization annealing upon helium-ion irradiation of pre-damaged fluorapatite. Nucl. Instr. Meth. B 1997, 132, 447–451. [Google Scholar] [CrossRef]
- Soulet, S.; Chaumont, J.; Krupa, J.C.; Carpena, J. Alpha irradiation effects in fluoroapatite and strontium titanate. Radiat. Eff. Defects Solids 2001, 155, 189–194. [Google Scholar] [CrossRef]
- Lei, Q.; He, Z.; Qi, W.; Tang, H.; Zeng, J.; Deng, Q.; Zhang, C.; Guo, N.; Zhang, H.; Zhang, Y.; et al. Irradiation-induced mixing of Na and K in graphite in molten salt reactor: An estimation based on ion beam irradiation. Nucl. Instr. Meth. B 2019, 450, 100–107. [Google Scholar] [CrossRef]
- Radek, M.; Liedke, B.; Schmidt, B.; Voelskow, M.; Bischoff, L.; Hansen, J.L.; Larsen, A.N.; Bougeard, D.; Böttger, R.; Prucnal, S.; et al. Ion-Beam-Induced Atomic Mixing in Ge, Si, and SiGe, Studied by Means of Isotope Multilayer Structures. Materials 2017, 10, 813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Demkowicz, M.J. Radiation-induced mixing between metals of low solid solubility. Acta Mater. 2014, 76, 135–150. [Google Scholar] [CrossRef] [Green Version]
- Reed, D.J. A review of recent theoretical developments in the understanding of the migration of helium in metals and its interaction with lattice defects. Radiat. Eff. 1977, 31, 129–147. [Google Scholar] [CrossRef]
- Liang, X.Q.; Wang, Y.Q.; Zhao, J.T.; Wu, S.H.; Wu, K.; Liu, G.; Sun, J. Size- and ion-dose-dependent microstructural evolution and hardening in He-irradiated miscible Cu/Zr crystalline/crystalline nanolaminates. Surf. Coat. Technol. 2019, 366, 255–265. [Google Scholar] [CrossRef]
- Yang, L.X.; Zheng, S.J.; Zhou, Y.T.; Zhang, J.; Wang, Y.Q.; Jiang, C.B.; Mara, N.A.; Beyerlein, I.J.; Ma, X.L. Effects of He radiation on cavity distribution and hardness of bulk nanolayered Cu-Nb composites. J. Nucl. Mater. 2017, 487, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Sen, H.S.; Daghbouj, N.; Callisti, M.; Vronka, M.; Karlík, M.; Duchoň, J.; Čech, J.; Lorinčík, J.; Havránek, V.; Bábor, P.; et al. Interface-Driven Strain in Heavy Ion-Irradiated Zr/Nb Nanoscale Metallic Multilayers: Validation of Distortion Modeling via Local Strain Mapping. ACS Appl Mater. Interfaces. 2022, 14, 12777–12796. [Google Scholar] [CrossRef]
- Daghbouj, N.; Li, B.S.; Callisti, M.; Sen, H.S.; Karlik, M.; Polcar, T. Microstructural evolution of helium-irradiated 6H–SiC subjected to different irradiation conditions and annealing temperatures: A multiple characterization study. Acta Mater. 2019, 181, 160–172. [Google Scholar] [CrossRef]
- Brimhall, J.L. Effect of Irradiation Particle Mass on Crystallization of Amorphous-Alloys. J. Mater. Sci. 1984, 19, 1818–1826. [Google Scholar] [CrossRef]
- Daghbouj, N.; Li, B.S.; Callisti, M.; Sen, H.S.; Lin, J.; Ou, X.; Karlik, M.; Polcar, T. The structural evolution of light-ion implanted 6H-SiC single crystal: Comparison of the effect of helium and hydrogen. Acta Mater. 2020, 188, 609–622. [Google Scholar] [CrossRef]
- Zhang, X.N.; Mei, X.; Zhang, Q.; Li, X.; Qiang, J.; Wang, Y. Damage induced by helium ion irradiation in Fe-based metallic glass. J. Nucl. Mater. 2017, 490, 216–225. [Google Scholar] [CrossRef] [Green Version]
Composition | Td (nm) | Number of Layers | Substrate Temperature | Air Pressure (Pa) | Sputtering Power (W) | Sputtering Rate (Å/s) | ||
---|---|---|---|---|---|---|---|---|
Ni | ZrC | Ni | ZrC | |||||
ZrC/Ni | 100 | 2 | Room temperature | ~0.7 Pa | 80 | 100 | 0.91 | 0.18 |
50 | 4 | |||||||
20 | 10 | |||||||
10 | 20 | |||||||
5 | 40 |
Td/nm | Tr/nm | D(111)/nm | D(200)/nm | D(220)/nm |
---|---|---|---|---|
5 | 5.35 | 2.97 | 0.68 | 2.75 |
10 | 11.90 | 4.53 | 1.80 | 4.24 |
20 | 23.90 | 5.19 | 2.66 | 4.58 |
50 | 60.25 | 8.41 | 4.67 | 6.91 |
100 | 118.9 | 9.60 | 5.86 | 7.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Zhu, R.; Hu, X.; Zhang, J.; Huang, Z. The Preparation of Amorphous ZrC/Nanocrystalline Ni Multilayers and the Resistance to He+ Irradiation. Materials 2022, 15, 3059. https://doi.org/10.3390/ma15093059
Jiang S, Zhu R, Hu X, Zhang J, Huang Z. The Preparation of Amorphous ZrC/Nanocrystalline Ni Multilayers and the Resistance to He+ Irradiation. Materials. 2022; 15(9):3059. https://doi.org/10.3390/ma15093059
Chicago/Turabian StyleJiang, Shengming, Ruihua Zhu, Xiaotian Hu, Jian Zhang, and Zijing Huang. 2022. "The Preparation of Amorphous ZrC/Nanocrystalline Ni Multilayers and the Resistance to He+ Irradiation" Materials 15, no. 9: 3059. https://doi.org/10.3390/ma15093059
APA StyleJiang, S., Zhu, R., Hu, X., Zhang, J., & Huang, Z. (2022). The Preparation of Amorphous ZrC/Nanocrystalline Ni Multilayers and the Resistance to He+ Irradiation. Materials, 15(9), 3059. https://doi.org/10.3390/ma15093059