Multifunctional Cu2SnS3 Nanoparticles with Enhanced Photocatalytic Dye Degradation and Antibacterial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of CTS Nanoparticles
2.2. Characterization
2.3. Photocatalytic Activity Measurement
2.4. Antimicrobial Activity Measurement
3. Results
3.1. Structural Elucidation
3.2. X-ray Photoelectron Spectroscopy
3.3. Scanning Electron Microscopy (SEM)
3.4. Brunauer–Emmett–Teller (BET) Analysis
3.5. Diffuse Reflectance Spectroscopy (DRS) Analysis
3.6. Photocatalytic Activity
3.7. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeed, M.; Usman, M.; Haq, A. Catalytic Degradation of Organic Dyes in Aqueous Medium; IntechOpen: London, UK, 2018; pp. 197–211. [Google Scholar]
- Nezza, F.; Guerra, G.; Costagliola, C.; Zeppa, L.; Ambrosone, L. Thermodynamic properties and photodegradation kinetics of indocyanine green in aqueous solution. Dyes Pigm. 2016, 134, 342–347. [Google Scholar] [CrossRef]
- Jegannathan, K.; Nielsen, P. Environmental assessment of enzyme use in industrial production a literature review. J. Clean Prod. 2013, 42, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Pandey, G. A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J. 2017, 1, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Lin, Z.; Ren, W.; Long, W.; Wang, Y.; Ouyang, X. Facile solvothermal synthesis of Cu2SnS3 architectures and their visible-light-driven photocatalytic properties. Mater. Lett. 2012, 89, 240–242. [Google Scholar] [CrossRef]
- Rohilla, S.; Gupta, A.; Kumar, V.; Kumari, S.; Petru, M.; Amor, N.; Noman, M.; Dalal, J. Excellent UV-Light Trig-gered Photocatalytic Performance of ZnO.SiO2 Nanocomposite for Water Pollutant Compound Methyl Orange Dye. Nanomaterials 2021, 11, 2548. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, W.; Díaz-Uribe, C.; Rios, K. Methylene Blue Photocatalytic Degradation under Visible Irradiation on In2S3 Synthesized by Chemical Bath Deposition. Adv. Phys. Chem. 2017, 2017, 1–5. [Google Scholar] [CrossRef]
- Guan, H.; Shen, H.; Raza, A. Solvothermal Synthesis of p-type Cu2ZnSnS4-Based Nanocrystals and Photocatalytic Properties for Degradation of Methylene Blue. Catal. Lett. 2017, 147, 1844–1850. [Google Scholar] [CrossRef]
- Malinowski, S.; Presečki, I.; Jajčinović, I.; Brnardić, I.; Mandić, V.G. Intensification of Dihydroxyben-zenes Degradation over Immobilized TiO2 Based Photocatalysts under Simulated Solar Light. Appl. Sci. 2020, 10, 7571. [Google Scholar] [CrossRef]
- Nidheesh, P.; Gandhimathi, R.; Ramesh, S. Degradation of dyes from aqueous solution by Fenton processes: A review. Environ. Sci. Pollut. Res. 2013, 20, 2099–2132. [Google Scholar] [CrossRef]
- Khamparia, S.; Jaspal, D.K. Adsorption in combination with ozonation for the treatment of textile waste water: A critical review. Front. Environ. Sci. Eng. 2017, 11, 1–18. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, H.; Cicek, N. Treatment of organic micropollutants in water and wastewater by UV-based pro-cesses: A literature review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1443–1476. [Google Scholar] [CrossRef]
- Zhang, A.; Yin, X.; Shen, X.; Liu, Y. Removal of Fluticasone Propionate and Clobetasol Propionate by Calcium Peroxide: Synergistic Effects of Oxidation, Adsorption, and Base Catalysis. ES Energy Environ. 2018, 1, 89–98. [Google Scholar] [CrossRef]
- Eren, Z. Ultrasound as a basic and auxiliary process for dye remediation: A review. J. Environ. Manag. 2012, 104, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Park, B.; Choi, J.; Thokchom, B.; Pandit, A.; Khim, J. A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism. Ultrason. Sonochem. 2018, 45, 29–49. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, R.; Gracia, F.; Stephen, A. Basic Principles, Mechanism, and Challenges of Photocatalysis; Springer: Cham, Switzerland, 2017; pp. 19–40. [Google Scholar]
- Rajeshwar, K.; Osugi, M.; Chanmanee, W.; Chenthamarakshan, C.; Zanoni, M.; Kajitvichyanukul, P.; Krish-nan-Ayer, R. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C 2008, 9, 171–192. [Google Scholar] [CrossRef]
- Covei, M.; Perniu, D.; Bogatu, C.; Duta, A. CZTS-TiO2 thin film heterostructures for advanced photocatalytic wastewater treatment. Catal. Today 2019, 321, 172–177. [Google Scholar] [CrossRef]
- Ocakoglu, K.; Dizge, N.; Colak, S.; Bilici, Z.; Yalcin, M.; Yatmaz, H. Polyethersulfone membranes modified with CZTS nanoparticles for protein and dye separation: Improvement of antifouling and self-cleaning performance. Colloids Surf. A Physicochem. Eng. Asp. 2021, 616, 126230–126238. [Google Scholar] [CrossRef]
- Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study. J. Nanomater. 2015, 2015, 720654. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Maddirevula, S.; Easwaran, M.; Dananjayad, S.; Kim, M. Antibacterial activity of novel Cu2ZnSnS4 nanoparticles against pathogenic strains. RSC Adv. 2015, 5, 106400–106405. [Google Scholar] [CrossRef]
- Bankier, C.; Matharu, R.; Cheong, Y.; Ren, G.; Cloutman, E.; Ciric, L. Synergistic Antibacterial Effects of Metallic Nanoparticle Combinations. Sci. Rep. 2019, 9, 16074. [Google Scholar] [CrossRef] [Green Version]
- Lokhande, A.; Shelke, A.; Babar, P.; Kim, J.; Lee, D.; Kim, I.L.; Lokhande, C.; Kim, J. Novel antibacterial application of photovoltaic Cu2SnS3 (CTS) nanoparticles. RSC Adv. 2017, 7, 33737–33744. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Adil, S.; Al-Mayouf, A. Metal oxides as photocatalysts. J. Saudi Chem. Soc. 2015, 19, 462–464. [Google Scholar] [CrossRef] [Green Version]
- Jing, Z.; Tan, L.; Li, F.; Wang, J.; Fu, Y.; Li, Q. Photocatalytic and antimicrobial activities of CdS nanoparticles pre-pared by solvothermal method. Indian J. Chem. 2013, 52, 57–62. [Google Scholar]
- Yao, S.; Zhou, S.; Zhou, X.; Wang, J.; Pu, X. TiO2-coated copper zinc tin sulfide photocatalyst for efficient photo-catalytic decolorization of dye-containing wastewater. Mater. Chem. Phys. 2020, 256, 123559. [Google Scholar] [CrossRef]
- Fakhri, A.; Behrouz, S. Assessment of SnS2 nanoparticles properties for photocatalytic and antibacterial applications. Sol. Energy 2015, 117, 187–191. [Google Scholar] [CrossRef]
- Mostafa, A.; Mwafy, E.; Hasanind, M. One-pot synthesis of nanostructured CdS, CuS, and SnS by pulsed laser ablation in liquid environment and their antimicrobial activity. Opt. Laser Technol. 2020, 121, 105824. [Google Scholar] [CrossRef]
- Lokhande, A.; Bagi, J. Studies on enhancement of surface mechanical properties of electrodeposited Ni-Co alloy coatings due to saccharin additive. Surf. Coat. Technol. 2014, 258, 225–231. [Google Scholar] [CrossRef]
- Xiong, X.; Ding, L.; Wang, Q.; Li, Y.; Jiang, Q.; Hu, J. Synthesis and photocatalytic activity of BiOBrnanosheets with tunable exposed {0 1 0} facets. Appl. Catal. B 2016, 188, 283–291. [Google Scholar] [CrossRef]
- Kumar, S.; Devi, L. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241. [Google Scholar] [CrossRef]
- Pekakis, P.; Xekoukoulotakis, N.; Mantzavinos, D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res. 2006, 40, 1276–1286. [Google Scholar] [CrossRef]
- Zhou, H.; Qu, Y.; Zeid, T.; Duan, X. Toward highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 2012, 5, 6732–6743. [Google Scholar] [CrossRef]
- Bao, N.; Shen, L.; Takata, T.; Domen, K. Self-templated synthesis of nanoporousCdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem. Mater. 2008, 20, 110–117. [Google Scholar] [CrossRef]
- Batabyal, S.; Lu, S.; Vittal, J. Synthesis, characterization, and photocatalytic properties of In2S3, ZnIn2S4, and CdIn2S4nanocrystals. Cryst. Growth Des. 2016, 16, 2231–2238. [Google Scholar] [CrossRef]
- Jathar, S.; Rondiya, S.; Jadhav, Y.; Nilegave, D.; Cross, R.; Barma, S.; Nasane, M.; Gaware, S.; Bade, B.; Jadkar, S.; et al. Ternary Cu2SnS3: Synthesis, Structure, Photoelectrochemical Activity, and Heterojunction Band Offset and Alignment. Chem. Mater. 2021, 36, 1983–1993. [Google Scholar] [CrossRef]
- Machale, A.; Phaltane, S.; Shelke, H.; Kadam, L. Facile hydrothermal synthesis of Cu2SnS3 nanoparticles for pho-tocatalytic dye degredation of mythelene blue. Mater. Today Proc. 2020, 43, 2768–2773. [Google Scholar] [CrossRef]
- Vanalakar, S.; Agawane, G.; Kamble, A.; Patil, P.; Kim, J. The green hydrothermal synthesis of nanostructured Cu2ZnSnSe4 as solar cell material and study of their structural, optical and morphological properties. Appl. Phys. A 2017, 123, 782. [Google Scholar] [CrossRef]
- Tao, H.; Zhu, S.; Yang, X.; Zhang, L.; Ni, S. Reducedgraphene oxide decorated ternary Cu2SnS3 as anode materials for lithium-ion batteries. J. Electroanal. Chem. 2016, 760, 127–134. [Google Scholar] [CrossRef]
- Belaqziz, M.; Medjnoun, K.; Djessas, K.; Chehouani, H.; Grillo, S. Structural and optical characterizations of Cu2SnS3 (CTS) nanoparticles synthesized by one-step green hydrothermal route. Mater. Res. Bull. 2018, 99, 182–188. [Google Scholar] [CrossRef]
- Helan, P.; Mohanraj, K.; Thanikaikarasan, S.; Mahalingam, T.; Sivakumar, G.; Sebastian, P. Ethylenediamine Pro-cessed Cu2SnS3 Nano Particles via Mild Solution Route. J. New Mater. Electrochem. Syst. 2016, 19, 1–5. [Google Scholar] [CrossRef]
- Henry, J.; Mohanraj, K.; Kannas, S.; Barathan, S.; Sivakumar, G. Structural and optical properties of SnS nanopar-ticles and electron-beam-evaporated SnS thin films. J. Exp. Nanosci. 2013, 10, 78–85. [Google Scholar] [CrossRef]
- Khel, L.; Khan, S. Zaman, SnS thin films fabricated by normal electrochemical deposition on aluminum plate. J. Chem. Soc. Pak. 2005, 27, 24–37. [Google Scholar]
- Suryawanshi, P.; Babar, B.; Mohite, A.; Pawar, U.; Bhosale, A.; Shelke, H. A simple chemical approach for the deposition of Cu2SnS3 (CTS) thin films. Mater. Today Proc. 2020, 43, 2682–2688. [Google Scholar] [CrossRef]
- Suryawanshi, M.; Shin, S.; Ghorpade, U.; Song, D.; Hong, C.; Han, S.; Heo, J.; Kang, S. A facile and green synthesis of colloidal Cu2ZnSnS4nanocrystals and their application in highly efficient solar water splitting. J. Mater. Chem. A 2017, 5, 4695–4709. [Google Scholar] [CrossRef]
- Mukherjee, A.; Mitra, P. Structural and optical characteristics of SnS thin film prepared by SILAR. Mater. Sci.-Pol. 2015, 33, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Lokhande, A.; Pawar, S.; Jo, E.; He, M.; Shelke, A.; Lokhande, C.; Kim, J. Amines free environmentally friendly rapid synthesis of Cu2SnS3 nanoparticles. Opt. Mater. 2016, 58, 268–278. [Google Scholar] [CrossRef]
- Kamble, A.; Sinha, B.; Vanalakar, S.; Agawane, G.; Gang, M.; Kim, J.; Patil, P.; Kim, J. Monodispersed wurtzite Cu2SnS3 nanocrystals by phosphine and oleylamine free facile heat-up technique. CrystEngComm 2016, 18, 2885–2893. [Google Scholar] [CrossRef]
- Lokhande, A.; Gurav, K.; Jo, E.; He, M.; Lokhande, C.; Kim, J. Toward cost effective metal precursor sources for future photovoltaic material synthesis: CTS nanoparticles. Opt. Mater. 2016, 54, 207–216. [Google Scholar] [CrossRef]
- Dias, S.; Kumawat, K.; Biswas, S.; Krupanidhi, S. Heat-up synthesis of Cu2SnS3 quantum dots for near infrared photodetection. RSC Adv. 2017, 7, 23301–23308. [Google Scholar] [CrossRef] [Green Version]
- Phaltane, S.; Vanalakar, S.; Bhat, T.; Patil, P.; Sartale, S.; Kadam, L. Photocatalytic degradation of methylene blue by hydrothermally synthesized CZTS nanoparticles. J. Mater. Sci. Mater. Electron. 2017, 28, 8186–8191. [Google Scholar] [CrossRef]
- Michal, M.; Milan, M.; Miroslav, P.; Pavel, U.; Ivo, K. Microwave-assisted solvothermal synthesis and characteri-zation of nanostructured Cu2SnS3 architectures. Nanocon 2015, 65, 174–177. [Google Scholar]
- Brunauer, S.; Deming, L.; Deming, W.; Teller, E. On a theory of the van der waals adsorption of gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar] [CrossRef]
- Ali, A.; Ahmed, S.; Rehman, J.; Abdullah, M.; Chen, H.; Guo, B.; Yang, Y. Cu2BaSnS4 novel quaternary quantum dots for enhanced photocatalytic applications. Mater. Today Commun. 2021, 26, 101675. [Google Scholar] [CrossRef]
- Bahramzadeh, S.; Abdizadeh, H.; Golobostanfard, M. Controlling the morphology and properties of solvothermal synthesized Cu2ZnSnS4 nanoparticles by solvent type. J. Alloys Compd. 2015, 642, 124–130. [Google Scholar] [CrossRef]
- Rahaman, S.; Sunil, M.; Singh, M.; Ghosh, K. Temperature dependent growth of Cu2SnS3 thin films using ultra-sonic spray pyrolysis for solar cell absorber layer and photocatalytic application. Mater. Res. Express. 2019, 6, 106417. [Google Scholar] [CrossRef]
- Kush, P.; Deka, S. Anisotropic kesterite Cu2ZnSnSe4 colloidal nanoparticles: Photoelectrical and photocata-lytic properties. Mater. Chem. Phys. 2015, 162, 608–616. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, J.; Liu, Y.; Yang, T.; Xu, Z. Surfactant-Tuned Phase Structure and Morphologies of Cu2ZnSnS4 Hier-archical Microstructures and Their Visible-Light Photocatalytic Activities. Nanoscale Res. Lett. 2017, 181, 251–257. [Google Scholar]
- Alirezazadeh, F.; Sheibani, S. Facile mechano-chemical synthesis and enhanced photocatalytic performance of Cu2ZnSnS4 nanopowder. Ceram. Int. 2020, 46, 26715–26723. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, L.; Wang, H.; Wang, W.; Zhang, L. TiO2/graphene porous composite and its photocatalytic degrada-tion of methylene blue. Mater. Des. 2016, 108, 632–639. [Google Scholar] [CrossRef]
- Belachew, N.; Kahsay, M.; Tadesse, A.; Basavaiah, K. Green synthesis of reduced graphene oxide grafted Ag/ZnO for photocatalytic abatement of methylene blue and antibacterial activities. J. Environ. Chem. Eng. 2020, 8, 104–106. [Google Scholar] [CrossRef]
- Rajendran, R.; Varadharajan, K.; Jayaraman, V.; Singaram, B.; Jeyaram, J. Photocatalytic degradation of metronidazole and methylene blue by PVA-assisted Bi2WO6-CdS nanocomposite film under visible light irradiation. Appl. Nanosci. 2018, 8, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.; Huang, Y. The phenomena and mechanism for the enhanced adsorption and photocatalytic de-composition of organic dyes with Ag3Po4/graphene oxide aerogel composites. Ceram. Int. 2020, 46, 2565–2570. [Google Scholar] [CrossRef]
- Vinodhkumar, G.; Wilson, J.; Inbanathan, S.; Potheher, I.; Ashokkumar, M.; Peter, A. Solvothermal synthesis of magnetically separable reduced grapheme oxide/Fe3O4 hybrid nanocomposites with enhanced photocatalytic properties. Physica B Condens. Matter 2020, 580, 411752. [Google Scholar] [CrossRef]
- Ashraf, M.; Li, C.; Zhang, D.; Fakhri, A. Graphene oxides as support for the synthesis of nickel sulfideeindium oxide nanocomposites for photocatalytic, antibacterial and antioxidant performances. Appl. Organomet. Chem. 2020, 34, 5354. [Google Scholar] [CrossRef]
- Ahmed, M.; El-Naggar, M.; Aldalbahi, A.; El-Newehy, M.; Menazea, A. Methylene blue degradation under visible light of metallic nanoparticles scattered into graphene oxide using laser ablation technique in aqueous solutions. J. Mol. Liq. 2020, 315, 113794. [Google Scholar] [CrossRef]
- Chaudhary, K.; Shaheen, N.; Zulfiqar, S.; Sarwar, M.; Suleman, M.; Agboola, P.; Shakir, I.; Warsi, M. Binary WO3-ZnO nanostructures supported rGO ternary nanocomposite for visible light driven photocatalytic degradation of methylene blue. Synth. Met. 2020, 269, 116526. [Google Scholar] [CrossRef]
- Ali, A.; Liang, Y.; Ahmed, S.; Yang, B.; Guo, B.; Yang, Y. Mutual contaminants relational realization and photo-catalytic treatment using Cu2MgSnS4 decorated BaTiO3. Appl. Mater. Today 2020, 18, 100534. [Google Scholar] [CrossRef]
- Jadhav, P.; Shinde, S.; Suryawanshi, S.; Teli, S.; Patil, P.; Ramteke, A.; Hiremath, N.; Prasad, A.N.R. Green AgNPs Decorated ZnO Nanocomposites for Dye Degradation and Antimicrobial Applications. Eng. Sci. 2020, 12, 79–94. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, R.; Tian, Y.; Su, B.; Wang, K.; Yu, S.; Zhang, J.; Fang, J. Sterilization Efficiency of a Novel Electro-chemical Disinfectant against Staphylococcus aureus. Environ. Sci. Technol. 2016, 50, 184–192. [Google Scholar]
- Vatansever, F.; Melo, W.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N.; Yin, R.; et al. Antimicrobial strategies centered around reactive oxygen species—bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 2013, 37, 955–989. [Google Scholar] [CrossRef] [Green Version]
Photocatalyst | The Initial Concentration of MB Dye (mg/L) | Light Source | Degradation % | Irradiation Time (min) | Ref. No. |
---|---|---|---|---|---|
CTS | 25 | Visible light | 95 | 120 | Proposed |
CTS | 25 | Visible light | 90 | 150 | [37] |
CZTS | 15 | Visible light | 94 | 120 | [59] |
TiO2 | 10 | Sunlight | 96 | 150 | [60] |
ZnO | 10 | Visible light | 99 | 120 | [61] |
CdS | 20 | Visible light | 92 | 100 | [62] |
Ag3PO4 | 2 | Visible light | 99 | 60 | [63] |
Fe3O4 | 12 | UV light | 74 | 60 | [64] |
In2O3 | 10 | UV light | 98 | 40 | [65] |
CuO | 5 | Visible light | 93 | 40 | [66] |
WO3 | 5 | Visible light | 94 | 90 | [67] |
Entry | Antibacterial Activity | Antifungal Activity | ||
---|---|---|---|---|
S. aureus (NCIM-2654) | B. subtilis (NCIM-2635) | P. vulgaris (NCIM 2813) | C. albicans (NCIM-3466) | |
CTS NPs | 11.67 ± 0.58 | 12.67 ± 1.15 | 14.00 ± 1.00 | 10.33 ± 1.53 |
Streptomycin | 16.33 ± 0.58 | 20.67 ± 0.58 | 20.33 ± 0.58 | - |
Fluconazole | - | - | - | 14.67 ± 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shelke, H.D.; Machale, A.R.; Survase, A.A.; Pathan, H.M.; Lokhande, C.D.; Lokhande, A.C.; Shaikh, S.F.; Rana, A.u.H.S.; Palaniswami, M. Multifunctional Cu2SnS3 Nanoparticles with Enhanced Photocatalytic Dye Degradation and Antibacterial Activity. Materials 2022, 15, 3126. https://doi.org/10.3390/ma15093126
Shelke HD, Machale AR, Survase AA, Pathan HM, Lokhande CD, Lokhande AC, Shaikh SF, Rana AuHS, Palaniswami M. Multifunctional Cu2SnS3 Nanoparticles with Enhanced Photocatalytic Dye Degradation and Antibacterial Activity. Materials. 2022; 15(9):3126. https://doi.org/10.3390/ma15093126
Chicago/Turabian StyleShelke, Harshad D., Archana R. Machale, Avinash A. Survase, Habib M. Pathan, Chandrakant D. Lokhande, Abhishek C. Lokhande, Shoyebmohamad F. Shaikh, Abu ul Hassan S. Rana, and Marimuthu Palaniswami. 2022. "Multifunctional Cu2SnS3 Nanoparticles with Enhanced Photocatalytic Dye Degradation and Antibacterial Activity" Materials 15, no. 9: 3126. https://doi.org/10.3390/ma15093126
APA StyleShelke, H. D., Machale, A. R., Survase, A. A., Pathan, H. M., Lokhande, C. D., Lokhande, A. C., Shaikh, S. F., Rana, A. u. H. S., & Palaniswami, M. (2022). Multifunctional Cu2SnS3 Nanoparticles with Enhanced Photocatalytic Dye Degradation and Antibacterial Activity. Materials, 15(9), 3126. https://doi.org/10.3390/ma15093126