Optical and Photosensitive Properties of Flexible n (p)–InSe/In2O3 Heterojunctions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Himani, A.; Artur, E. Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe. InfoMat 2021, 3, 662–693. [Google Scholar]
- Bucher, E. Photovoltaic properties of solid state junctions of layered semiconductors. In Photoelectrochemistry and Photovoltaics of Layered Semiconductors; Springer: Dordrecht, The Nederlands, 1992; pp. 1–81. [Google Scholar]
- Elumalai, N.K.; Vijila, C.; Jose, R.; Uddin, A.; Ramakrishna, S. Metal oxide semiconducting interfacial layers for photovoltaic and photocatalytic applications. Mater. Renew. Sustain. Energy 2015, 4, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Siciliano, T.; Di Giulio, M.; Tepore, M.; Genga, A.; Micocci, G.; Tepore, A. In2O3 films prepared by thermal oxidation of amorphous InSe thin films. Thin Solid Film. 2012, 520, 2455–2460. [Google Scholar] [CrossRef]
- Vatavu, E.; Leontie, L.; Caraman, I.; Sprincean, V.; Untila, D.; Doroftei, C.; Caraman, M. Optical and structural properties of n− and p−InSe/In2O3 heterostructures. J. Lumin. 2020, 227, 117550. [Google Scholar] [CrossRef]
- Liviu, L.; Sprincean, V.; Untila, D.; Spalatu, N.; Caraman, I.; Cojocaru, A.; Susu, O.; Lupan, O.; Evtodiev, I.; Vatavu, E.; et al. Synthesis and optical properties of Ga2O3 nanowires grown on GaS substrate. Thin Solid Film. 2019, 689, 137502. [Google Scholar]
- Walsh, A.; Da Silva, J.L.F.; Wei, S.-H.; Körber, C.; Klein, A.; Piper, L.F.J.; DeMasi, A.; Smith, K.E.; Panaccione, G.; Torelli, P.; et al. Nature of the band gap of In2O3 revealed by first-principles calculations and X-ray spectroscopy. Phys. Rev. Lett. 2008, 100, 167402. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Wang, A.; Edleman, N.L.; Ni, J.; Lee, P.; Armstrong, N.R.; Marks, T.J. Indium Tin Oxide Alternatives–High Work Function Transparent Conducting Oxides as Anodes for Organic Light-Emitting Diodes. Adv. Mater. 2001, 13, 1476–1480. [Google Scholar] [CrossRef]
- Kumar, A.S.; Wang, M.; Li, Y.; Fujita, R.; Gao, X.P.A. Interfacial Charge Transfer and Gate-Induced Hysteresis in Monochalcogenide InSe/GaSe Heterostructures. ACS Appl. Mater. Inter. 2020, 12, 46854–46861. [Google Scholar] [CrossRef]
- Kohjiro, H.; Kazuhiro, S.; Hironori, A. Semiconductor-sensitized solar cells based on nanocrystalline In2S3/In2O3 thin film electrodes. Sol. Energy Mat. Sol. Cells 2000, 62, 441–447. [Google Scholar]
- Afaneh, T.; Fryer, A.; Xin, Y.; Hyde, R.H.; Kapuruge, N.; Gutiérrez, H.R. Large-area growth and stability of monolayer gallium monochalcogenides for optoelectronic devices. ACS Appl. Mater. Int. 2020, 3, 7879–7887. [Google Scholar] [CrossRef]
- Shunli, W.; Sun, H.; Wang, Z.; Zeng, X.; Ungar, G.; Guo, D.; Shen, J.; Li, P.; Liu, A.; Li, C.; et al. In situ synthesis of monoclinic β-Ga2O3 nanowires on flexible substrate and solar-blind photodetector. J. Alloy. Compd. 2019, 787, 133–139. [Google Scholar]
- Sui, Y.; Liang, H.; Huo, W.; Wang, Y.; Mei, Z. A flexible and transparent β-Ga2O3 solar-blind ultraviolet photodetector on mica. J. Phys. D Appl. Phys. 2020, 53, 504001. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Li, H.; Li, S.; Zhi, Y.; Yan, Z.; Huang, X.; Wei, X.; Tang, W.; Wu, Z. Ultrasensitive flexible solar-blind photodetectors based on graphene/amorphous Ga2O3 van der Waals heterojunctions. ACS Appl. Mater. Int. 2020, 12, 47714–47720. [Google Scholar] [CrossRef] [PubMed]
- Sen-Tsun, J.; Yung-Chiun, H. Growth mechanism and photoluminescence properties of In2O3 nanotowers. Cryst. Growth Des. 2010, 10, 2104–2110. [Google Scholar]
- Xie, C.; Mak, C.; Tao, X.; Yan, F. Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater. 2017, 27, 1603886. [Google Scholar] [CrossRef]
- Jiang, Z.X.; Wu, Z.Y.; Ma, C.C.; Deng, J.N.; Zhang, H.; Xu, Y.; Ye, J.D.; Fang, Z.L.; Zhang, G.Q.; Kang, J.Y.; et al. P-type β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with extremely high responsivity and gain-bandwidth product. Mater. Today Phys. 2020, 14, 100226. [Google Scholar] [CrossRef]
- López, I.; Castaldini, A.; Cavallini, A.; Nogales, E.; Méndez, B.; Piqueras, J. β-Ga2O3 nanowires for an ultraviolet light selective frequency photodetector. J. Phys. D Appl. Phys. 2014, 47, 415101. [Google Scholar] [CrossRef]
- Ghosh, P.K. Introduction to photoelectron spectroscopy. In Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications; John Wiley & Sons Ltd.: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, Japan; Singapore, 1983; Volume 67. [Google Scholar]
- Komolov, A.S.; Lazneva, E.F.; Gerasimova, N.B.; Panina, Y.A.; Sobolev, V.S.; Koroleva, A.V.; Pshenichnyuk, S.A.; Asfandiarov, N.L.; Modelli, A.; Handkee, B.; et al. Conduction band electronic states of ultrathin layers of thiophene/phenylene co-oligomers on an oxidized silicon surface. J. Electron. Spectros. 2019, 235, 40–45. [Google Scholar] [CrossRef]
- Guo, Z.; Liu1, J.; Jia, Y.; Chen, X.; Meng, F.; Li, M.; Liu, J. Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres. Nanotechnology 2008, 19, 345704. [Google Scholar] [CrossRef]
- Casey, P.S.; Rossouw, C.J.; Boskovic, S.; Lawrence, K.A.; Turney, T.W. Incorporation of dopants into the lattice of ZnO nanoparticles to control photoactivity. Superlattice. Microst. 2006, 39, 97–106. [Google Scholar] [CrossRef]
- Xie, C.; Lu, X.-T.; Ma, M.-R.; Tong, X.-W.; Zhang, Z.-X.; Wang, L.; Wu, C.-Y.; Yang, W.-H.; Luo, L.-B. Catalyst-Free Vapor–Solid Deposition Growth of β–Ga2O3 Nanowires for DUV Photodetector and Image Sensor Application. Adv. Opt. Mater. 2019, 7, 1901257. [Google Scholar] [CrossRef]
- Pang, H.-F. Biuret-assisted formation of nanostructured In2O3 architectures and their photoluminescence properties. J. Lumin. 2017, 182, 8–14. [Google Scholar]
- Kanaya, K.; Okayama, S. Penetration and energy-loss theory of electrons in solid targets. J. Phys. D Appl. Phys. 1972, 5, 43–58. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, X.; Yang, F.; Yang, X. Template-free, surfactantless route to fabricate In(OH)3 monocrystalline nanoarchitectures and their conversion to In2O3. Cryst. Growth Des. 2008, 8, 950–956. [Google Scholar] [CrossRef]
- Dussan, S.; Singh, M.K.; Kumar, A.; Katiyar, R.S. Synthesis, Structural and Magnetic Properties of Ni-Doped In2O3 Nanoparticles. Integr. Ferroelectr. 2011, 125, 155–161. [Google Scholar] [CrossRef]
- Caracas, R.; Cohen, R.E. Post-perovskite phase in selected sesquioxides from density-functional calculations. Phys. Rev. B 2007, 76, 184101. [Google Scholar] [CrossRef]
- Manmeet, K.; Jain, N.; Sharma, K.; Bhattacharya, S.; Roy, M.; Tyagi, A.K.; Gupta, S.K.; Yakhmi, J.V. Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers. Sens. Actuat. B-Chem. 2008, 133, 456–461. [Google Scholar]
- Jiayong, G.; Lu, X.; Wu, J.; Xie, S.; Zhai, T.; Yu, M.; Zhang, Z.; Mao, Y.; Wang, S.C.I.; Shen, Y.; et al. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci. Rep. 2013, 3, 1–7. [Google Scholar]
- Mahmoud, Z.; Jain, K.P.; Mavi, H.S.; Balkanski, M.; Julien, C.; Chevy, A. Raman investigation of InSe doped with GaS. Mater. Sci. Eng. B-Adv. 1996, 38, 161–170. [Google Scholar]
- Kim, H.S.; Na, H.G.; Yang, J.C.; Lee, C.; Kim, H.W. Synthesis, structure, photoluminescence, and raman spectrum of indium oxide nanowires. Acta Phys. Pol. A 2011, 119, 143–145. [Google Scholar] [CrossRef]
- Thlel, B.; Helbig, R. Growth of SnO2 single crystals by a vapour phase reaction method. J. Cryst. Growth 1976, 32, 259–264. [Google Scholar] [CrossRef]
- Yu, P.Y.; Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Zelewski, S.J.; Kudrawiec, R. Photoacoustic and modulated reflectance studies of indirect and direct band gap in van der Waals crystals. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mergel, D.; Qiao, Z. Dielectric modelling of optical spectra of thin In2O3: Sn films. J. Phys. D Appl. Phys. 2002, 35, 794. [Google Scholar] [CrossRef]
- Pollak, F.H. Modulation spectroscopy of semiconductors and semiconductor microstructures. In Handbook on Semiconductors, Optical Properties of Semiconductors; Balkanski, M., Ed.; North Holland: Amsterdam, The Netherlands, 1994; Volume 2, pp. 527–635. [Google Scholar]
- Sell, D.D.; Stokowski, S.E. Modulated piezo reflectance and reflectance studies of GaAs. Modulated piezo reflectance and reflectance studies of GaAs. In Proceedings of the Tenth International Conference on the Physics of Semiconductors, Cambridge, MA, USA, 17–21 August 1970; pp. 411–422. [Google Scholar]
- Lang, O.; Pettenkofer, C. Thin film growth and band lineup of In2O3 on the layered semiconductor InSe. Int. J. Appl. Phys. 1999, 86, 5687–5691. [Google Scholar] [CrossRef] [Green Version]
- Feneberg, M.; Nixdorf, J.; Lidig, C.; Goldhahn, R. Many-electron effects on the dielectric function of cubic In2O3: Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift. Phys. Rev. B Condens. Matter 2016, 93, 045203. [Google Scholar] [CrossRef] [Green Version]
- Karlheinz, S. Semiconductor Physics: An Introduction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Wasserman, A.L. Band-Structure Effective Mass. In Encyclopedia of Condensed Matter Physics; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1–5. [Google Scholar]
- Fuchs, F.; Bechstedt, F. Indium-oxide polymorphs from first principles: Quasiparticle electronic states. Phys. Rev. B 2008, 77, 155107. [Google Scholar] [CrossRef]
- Jeong, J.S.; Lee, J.Y.; Lee, C.J.; An, S.J.; Yi, G.-C. Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature. Chem. Phys. Lett. 2004, 384, 246–250. [Google Scholar] [CrossRef]
- Tao, G.; Taihong, W. Catalytic growth of In2O3 nanobelts by vapor transport. J. Cryst. Growth 2006, 290, 660–664. [Google Scholar]
- Jun, T.; Naruo, C.; Yamamoto, Y.; Matsuoka, M. Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation. Sens. Actuat. B-Chem. 2002, 83, 190–194. [Google Scholar]
- Qingsheng, L.; Lu, W.; Ma, A.; Tang, J.; Lin, J.; Fang, J. Study of quasi-monodisperse In2O3 nanocrystals: Synthesis and optical determination. J. Am. Chem. Soc. 2005, 127, 5276–5277. [Google Scholar]
- Fanhao, Z.; Zhang, X.; Wang, J.; Wang, L.; Zhang, L. Large-scale growth of In2O3 nanowires and their optical properties. Nanotechnology 2004, 15, 596. [Google Scholar]
- Camassel, J.; Merle, P.; Mathieu, H.; Chevy, A. Excitonic absorption edge of indium selenide. Phys. Rev. B 1978, 17, 4718. [Google Scholar] [CrossRef]
- Shigetomi, S.; Ikari, T. Electrical and optical properties of n-and p-InSe doped with Sn and As. Int. J. Appl. Phys. 2003, 93, 2301–2303. [Google Scholar] [CrossRef]
- Makkawi, O.; Huang, Y.; Feng, W.; Liu, G.; Qiu, Y.; Hu, P.A. Modulation of opto-electronic properties of InSe thin layers via phase transformation. RSC Adv. 2016, 6, 70452–70459. [Google Scholar]
- Kudrynskyi, Z.; Khomyak, V.; Katerynchuk, V.; Kovalyuk, M.; Netyaga, V.; Kushnir, B. Fabrication and characterization of photosensitive n-ZnO/p-InSe heterojunctions. Thin Solid Film. 2015, 582, 253–257. [Google Scholar] [CrossRef]
- Savchyn, V.P.; Kytsai, V.B. Photoelectric properties of heterostructures based on thermo-oxidated GaSe and InSe crystals. Thin Solid Film. 2000, 361, 123–125. [Google Scholar] [CrossRef]
- Katerynchuk, V.N.; Kovalyuk, Z.D. Fabrication of oxide/p–InSe heterostructures with improved photoelectric characteristics. Fiz. Tekh. Poluprovodn. 2004, 38, 417–421. (In Russian) [Google Scholar]
- Il’chuk, G.A.; Kusznezh, V.V.; Petrus’, R.Y.; Rud’, V.Y.; Rud’, Y.V.; Terukov, E.I.; Ukrainets, V.O. Heterophotocells n–Ox/n–InSe: Creation and properties. Fiz. Tekh. Poluprovodn. 2006, 40, 1356–1360. (In Russian) [Google Scholar]
- Kovalyuk, Z.D.; Sydor, O.N.; Katerynchuk, V.N.; Netyaga, V.V. Studies of isotype photosensitive heterostructures (intrinsic oxide)/n–InSe obtained by long-term thermal oxidation. Fiz. Tekh. Poluprovodn. 2007, 41, 1074–1077. (In Russian) [Google Scholar]
- Gatulle, M.; Fischer, M. Elastic Constants of the Layered Compounds GaS, GaSe, InSe, and Their Pressure Dependence II. Theoretical Part. Phys. Status Solidi B 1984, 121, 59–71. [Google Scholar] [CrossRef]
- Gauthier, M.; Polian, A.; Besson, J.M.; Chevy, A. Pressure effect on a layer compound: GaSe. High Press. Res. 1990, 3, 75–77. [Google Scholar] [CrossRef]
No. | Experimental Data | In2O3 Nanowires [28] | In2O3 Nanocubes [26] | In2O3 Bulk [23] | SnO2 [30] | InSe [27] | |
---|---|---|---|---|---|---|---|
(cm−1) | , Arb. Units | (cm−1) | (cm−1) | (cm−1) | (cm−1) | (cm−1) | |
1. | 110 | 956 | 109 | 103 | 109 | - | - |
2. | 135 | 970 | 133 | 130 | 131 | - | - |
3. | 216 | 915 | - | - | 169 | - | 199 |
4. | 230 | 940 | 231 | - | 212 | 225 | 225 |
5. | 250 | 979 | - | - | - | - | - |
6. | 306 | 892 | 304 | 302 | 306 | - | 407/423 |
7. | 470 | 813 | - | - | - | 475 | |
8. | 501 | 828 | - | 494 | 495 | - | - |
9. | 540 | 798 | - | - | - | 540 | |
10. | 627 | 804 | - | 620 | 629 | - | - |
11. | 638 | 800 | - | - | - | 635 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sprincean, V.; Leontie, L.; Caraman, I.; Untila, D.; Girtan, M.; Gurlui, S.; Lisnic, P.; Doroftei, C.; Carlescu, A.; Iacomi, F.; et al. Optical and Photosensitive Properties of Flexible n (p)–InSe/In2O3 Heterojunctions. Materials 2022, 15, 3140. https://doi.org/10.3390/ma15093140
Sprincean V, Leontie L, Caraman I, Untila D, Girtan M, Gurlui S, Lisnic P, Doroftei C, Carlescu A, Iacomi F, et al. Optical and Photosensitive Properties of Flexible n (p)–InSe/In2O3 Heterojunctions. Materials. 2022; 15(9):3140. https://doi.org/10.3390/ma15093140
Chicago/Turabian StyleSprincean, Veaceslav, Liviu Leontie, Iuliana Caraman, Dumitru Untila, Mihaela Girtan, Silviu Gurlui, Petru Lisnic, Corneliu Doroftei, Aurelian Carlescu, Felicia Iacomi, and et al. 2022. "Optical and Photosensitive Properties of Flexible n (p)–InSe/In2O3 Heterojunctions" Materials 15, no. 9: 3140. https://doi.org/10.3390/ma15093140
APA StyleSprincean, V., Leontie, L., Caraman, I., Untila, D., Girtan, M., Gurlui, S., Lisnic, P., Doroftei, C., Carlescu, A., Iacomi, F., & Caraman, M. (2022). Optical and Photosensitive Properties of Flexible n (p)–InSe/In2O3 Heterojunctions. Materials, 15(9), 3140. https://doi.org/10.3390/ma15093140