Amoxicillin Retention/Release in Agricultural Soils Amended with Different Bio-Adsorbent Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils and Bio-Adsorbents
2.2. Chemical Reagents
2.3. Adsorption and Desorption Experiments
2.4. Data Treatment
3. Results
3.1. Adsorption
3.2. Desorption
4. Discussion
4.1. Adsorption
4.2. Desorption
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conde-Cid, M.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Fernández-Calviño, D.; Arias-Estévez, M. Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks. Processes 2020, 8, 1479–1519. [Google Scholar] [CrossRef]
- Khan, N.A.; Khan, S.U.; Ahmed, S.; Farooqi, I.H.; Yousefi, M.; Mohammadi, A.A.; Changani, F. Recent trends in disposal and treatment technologies of emerging-pollutants—A critical review. Trends Anal. Chem. 2020, 122, 115744–115759. [Google Scholar] [CrossRef]
- ECDC. European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA (ESAC-Net)—Annual Epidemiological Report 2020; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2021. [Google Scholar]
- Duan, H.; Li, X.; Mei, A.; Li, P.; Liu, Y.; Li, X.; Li, W.; Wang, C.; Xie, S. The diagnostic value of metagenomic next-generation sequencing in infectious diseases. BMC Infect. Dis. 2021, 21, 62–69. [Google Scholar] [CrossRef]
- Russell, J.N.; Yost, C.K. Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems. Chemosphere 2021, 263, 128177–128187. [Google Scholar] [CrossRef] [PubMed]
- Santás-Miguel, V.; Díaz-Raviña, M.; Martín, A.; García-Campos, E.; Barreiro, A.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Arias-Estévez, M.; Fernández-Calviño, D. Medium-term influence of tetracyclines on total and specific microbial biomass in cultivated soils of Galicia (NW Spain). Span. J. Soil Sci. 2020, 10, 2017–2232. [Google Scholar] [CrossRef]
- Christou, A.; Agüera, A.; Bayona, J.M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.M.; Michael, C.; Revitt, M.; Schöder, P.; et al. Τhe potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes—A review. Water Res. 2017, 123, 448–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzeminski, P.; Tomei, M.C.; Karaolia, P.; Langenhoff, A.; Almeida, C.M.R.; Felis, E.; Gritten, F.; Andersen, H.R.; Fernandes, T.; Manaia, C.M.; et al. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Sci. Total Environ. 2019, 648, 1052–1081. [Google Scholar] [CrossRef] [Green Version]
- Salam, L.B.; Obayori, O.S. Structural and functional metagenomics analyses of a tropical agricultural soil. Span. J. Soil Sci. 2019, 9, 1–23. [Google Scholar] [CrossRef]
- Ahmed, M.B.M.; Rajapaksha, A.U.; Lim, J.E.; Vu, N.T.; Kim, I.S.; Kang, H.M.; Lee, S.S.; Ok, Y.S. Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and lettuce. J. Agric. Food Chem. 2015, 63, 398–405. [Google Scholar] [CrossRef]
- Azanu, D.; Mortey, C.; Darko, G.; Weisser, J.J.; Styrishave, B.; Abaidoo, R.C. Uptake of antibiotics from irrigation water by plants. Chemosphere 2016, 157, 107–114. [Google Scholar] [CrossRef]
- Yazidi, A.; Atrous, M.; Soetaredjo, F.E.; Sellaoui, L.; Ismadji, S.; Erto, A.; Bonilla-Petriciolet, A.; Dotto, G.L.; Lamine, A.B. Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis. Chem. Eng. J. 2020, 379, 122320. [Google Scholar] [CrossRef]
- Kidak, R.; Doğan, Ş. Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water. Ultrason. Sonochem. 2018, 40, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Ryu, H.; Chung, E.G.; Kim, Y. Determination of 18 veterinary antibiotics in environmental water using high-performance liquid chromatography-q-orbitrap combined with on-line solid-phase extraction. J. Chromatogr. B 2018, 1084, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Cacace, D.; Fatta-Kassinos, D.; Manaia, C.M.; Cytryn, E.; Kreuzinger, N.; Rizzo, L.; Karaolia, P.; Schwartz, T.; Alexander, J.; Merlin, C.; et al. Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan- European survey of urban settings. Water Res. 2019, 162, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Mehmood, S.; Rasheed, T.; Iqbal, H.M. Antibiotics traces in the aquatic environment: Persistence and adverse environmental impact. Curr. Opin. Environ. Sci. Health 2020, 13, 68–74. [Google Scholar] [CrossRef]
- Parra-Saldivar, R.; Bilal, M.; Iqbal, H.M.N. Life cycle assessment on wastewater treatment technology. Curr. Opin. Environ. Sci. Health 2020, 13, 80–84. [Google Scholar] [CrossRef]
- Rizzo, L.; Gernjak, W.; Krzeminski, P.; Malato, S.; McArdell, C.S.; Perez, J.A.S.; Schaar, H.; Fatta-Kassinos, D. Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. Sci. Total Environ. 2020, 710, 136312–136329. [Google Scholar] [CrossRef]
- Adegoke, A.A.; Amoah, I.D.; Stenström, T.A.; Verbyla, M.E.; Mihelcic, J.R. Epidemiological evidence and health risks associated with agricultural reuse of partially treated and untreated wastewater: A review. Front. Public Health 2018, 6, 337–357. [Google Scholar] [CrossRef] [Green Version]
- Carey, R.O.; Migliaccio, K.W. Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: A review. Environ. Manag. 2009, 44, 205–217. [Google Scholar] [CrossRef]
- Payment, P.; Plante, R.; Cejka, P. Removal of indicator bacteria, human enteric viruses Giardia cysts and Cryptosporidium oocysts at a large wastewater primary treatment facility. Can. J. Microbiol. 2001, 47, 188–193. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, N.A.L.; Gonçalves, B.H.; Lee, S.; Oliveira, C.A.F.; Corassin, C.H. Use of antibiotics in animal production and its impact on human health. JFCN 2020, 6, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Grenni, P.; Ancona, V.; Caracciolo, A.B. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.; Sharma, V.K. Occurrence and toxicity of antibiotics in the aquatic environment—A review. Chemosphere 2020, 251, 126351–126366. [Google Scholar] [CrossRef]
- Piña, B.; Bayona, J.M.; Christou, A.; Fatta-Kassinos, D.; Guillon, E.; Lambropoulou, D.; Michael, C.; Polesel, F.; Sayen, S. On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes—NEREUS COST Action ES1403 position paper. J. Environ. Chem. Eng. 2020, 8, 102131–102134. [Google Scholar] [CrossRef]
- Chen, Q.; An, X.; Li, H.; Su, J.; Ma, Y.; Zhu, Y. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ. Int. 2016, 92–93, 1–10. [Google Scholar] [CrossRef]
- López-Periago, E.; Núñez-Delgado, A.; Díaz-Fierros, F. Attenuation of groundwater contamination caused by cattle slurry: A plot-scale experimental study. Bioresour. Technol. 2002, 84, 105–111. [Google Scholar] [CrossRef]
- Núñez-Delgado, A.; López-Períago, E.; Díaz-Fierros-Viqueira, F. Pollution attenuation by soils receiving cattle slurry after passage of a slurry-like feed solution: Column experiments. Bioresour. Technol. 2002, 84, 229–236. [Google Scholar] [CrossRef]
- Xie, T.; Wang, M.; Su, C.; Chen, W. Evaluation of the natural attenuation capacity of urban residential soils with ecosystem-service performance index (EPX) and entropy-weight methods. Environ. Pollut. 2018, 238, 222–229. [Google Scholar] [CrossRef]
- Dong, J.; Xie, H.; Feng, R.; Lai, X.; Duan, H.; Xu, L.; Xia, X. Transport and fate of antibiotics in a typical aqua-agricultural catchment explained by rainfall events: Implications for catchment management. J. Environ. Manag. 2021, 293, 112953–112963. [Google Scholar] [CrossRef]
- Kemper, N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 2008, 8, 1–13. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Fate of antibiotics in soil and their uptake by edible crops. Sci. Total Environ. 2017, 599–600, 500–512. [Google Scholar] [CrossRef] [PubMed]
- Putra, E.K.; Ismadji, S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Res. 2009, 43, 2419–2430. [Google Scholar] [CrossRef]
- Zha, S.X.; Zhou, Y.; Jin, X.; Chen, Z. The removal of amoxicillin from wastewater using organobentonite. J. Environ. Manag. 2013, 129, 569–576. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Pashalidis, I.; Orfanos, A.O.; Manariotis, I.D.; Tatarchuk, T.; Sellaoui, L.; Bonilla-Petriciolet, A.; Mittal, A.; Núñez-Delgado, A. Removal of caffeine, nicotine and amoxicillin from (waste) waters by various adsorbents. A review. J. Environ. Manag. 2020, 261, 110236. [Google Scholar] [CrossRef] [PubMed]
- Felix, I.M.B.; Moreira, L.C.; Chiavone-Filho, O.; Mattedi, S. Solubility measurements of amoxicillin in mixtures of water and ethanol from 283.15 to 298.15 K. Fluid Phase Equilib. 2016, 422, 78–86. [Google Scholar] [CrossRef]
- Shakak, M.; Rezaee, R.; Afshin, M.; Jafari, A.; Safari, M.; Shahmoradi, B.; Daraei, H.; Lee, S. Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions. Environ. Technol. 2020, 17, 100529–100543. [Google Scholar] [CrossRef]
- Homayoonfal, M.; Mehrnia, M.R. Amoxicillin separation from pharmaceutical solution by pH sensitive nanofiltration membranes. Sep. Purif. Technol. 2014, 130, 74–83. [Google Scholar] [CrossRef]
- Lyu, J.; Yang, L.; Zhang, L.; Ye, B.; Wang, L. Antibiotics in soil and water in China-a systematic review and source analysis. Environ. Pollut. 2020, 266, 115147–115159. [Google Scholar] [CrossRef]
- Ding, H.; Wu, Y.; Zou, B.; Lou, Q.; Zhang, W.; Zhong, J.; Lu, L.; Dai, G. Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption. J. Hazard. Mater. 2016, 307, 350–358. [Google Scholar] [CrossRef]
- Ata, R.; Sacco, O.; Vaiano, V.; Rizzo, L.; Tore, G.Y.; Sannino, D. Visible light active N-doped TiO2 immobilized on polystyrene as efficient system for wastewater treatment. J. Photochem. Photobiol. A Chem. 2017, 348, 255–262. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, W.; Duan, A.; Zeng, G.; Huang, D.; Lai, C.; Tan, X.; Cheng, M.; Wang, R.; Zhou, C.; et al. Adsorption behavior of engineered carbons and carbon nanomaterials for metal endocrine disruptors: Experiments and theoretical calculation. Chemosphere 2019, 222, 184–194. [Google Scholar] [CrossRef]
- Crisafully, R.; Millhome, M.A.L.; Cavalcante, R.M.; Silveira, E.R.; De Keukeleire, D.; Nascimento, R.F. Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresour. Technol. 2008, 99, 4515–4519. [Google Scholar] [CrossRef] [PubMed]
- Cela-Dablanca, R.; Nebot, C.; Rodríguez López, L.; Fernández-Calviño, D.; Arias-Estévez, M.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E. Efficacy of Different Waste and By-Products from Forest and Food Industries in the Removal/Retention of the Antibiotic Cefuroxime. Processes 2021, 9, 1151. [Google Scholar] [CrossRef]
- Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.J.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Calviño, D. Perspectives on the use of by-products to treat soil and water pollution. Micropor. Mesopor. Mater. 2015, 210, 199–201. [Google Scholar] [CrossRef]
- Ramírez-Pérez, A.M.; Paradelo, M.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Heavy metal retention in copper mine soil treated with mussel shells: Batch and column experiments. J. Hazard. Mater. 2013, 248–249, 122–130. [Google Scholar] [CrossRef]
- Seco-Reigosa, N.; Peña-Rodríguez, S.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture. Environ. Sci. Pollut. Res. 2013, 20, 2670–2678. [Google Scholar] [CrossRef]
- Seco-Reigosa, N.; Bermúdez-Couso, A.; Garrido-Rodríguez, B.; Arias-Estévez, M.; Fernández Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. As(V) retention on soils and forest by-products and other waste materials. Environ. Sci. Pollut. Res. 2013, 20, 6574–6583. [Google Scholar] [CrossRef]
- Seco-Reigosa, N.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Mixtures including wastes from the mussel shell processing industry: Retention of arsenic, chromium and mercury. J. Clean Prod. 2014, 84, 680–690. [Google Scholar] [CrossRef]
- Cutillas-Barreiro, L.; Ansias-Manso, L.; Fernández-Calviño, D.; Arias-Estévez, M.; Nóvoa-Muñoz, J.C.; Fernández Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: Batch-type and stirred flow chamber experiments. J. Environ. Manag. 2014, 144, 258–264. [Google Scholar] [CrossRef]
- Otero, M.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Cr (VI) sorption/desorption on untreated and mussel-shell-treated soil materials: Fractionation and effects of pH and chromium concentration. Solid Earth 2015, 6, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Romar, A.; Nóvoa, J.C.; Arias, M.; Fernández-Sanjurjo, M.J.; Álvarez, E.; Núñez, A. Controlling risks of P water pollution by sorption on soils, pyritic material, granitic material, and different by-products: Effects of pH and incubation time. Environ. Sci. Pollut. Res. 2018, 26, 11558–115564. [Google Scholar] [CrossRef] [PubMed]
- Quintáns-Fondo, A.; Ferreira-Coelho, G.; Paradelo, R.; Nóvoa, J.C.; Arias, M.; Fernández-Sanjurjo, M.J.; Álvarez, E.; Núñez, A. F sorption/desorption on two soils and on different by-products and waste materials. Environ. Sci. Pollut. Res. 2016, 23, 14676–14685. [Google Scholar] [CrossRef] [PubMed]
- Quintáns-Fondo, A.; Ferreira-Coelho, G.; Arias-Estévez, M.; Nóvoa-Múñoz, J.C.; Fernández-Calviño, D.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A. Chromium VI and fluoride competitive adsorption on different soils and by-products. Processes 2019, 7, 748–761. [Google Scholar] [CrossRef] [Green Version]
- Conde-Cid, M.; Ferreira-Coelho, G.; Arias-Estévez, M.; Álvarez-Esmorís, C.; Nóvoa Muñoz, J.C.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E. Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on pine bark, oak ash and mussel shell. J. Environ. Manag. 2019, 250, 109509–109519. [Google Scholar] [CrossRef] [PubMed]
- Conde-Cid, M.; Cela-Dablanca, R.; Ferreira-Coelho, G.; Fernández-Calviño, D.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Arias-Estévez, M.; Álvarez-Rodríguez, E. Sulfadiazine, sulfamethazine and sulfachloropyridazine removal using three different porous materials: Pine bark, “oak ash” and mussel shell. Environ. Res. 2021, 195, 110814–110820. [Google Scholar] [CrossRef]
- Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Arias-Estévez, M.; Conde-Cid, M.; Fernández-Calviño, D. Chapter 25—Sorbents to control soil pollution. In Sorbents Materials for Controlling Environmental Pollution; Núñez-Delgado, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 691–700. [Google Scholar] [CrossRef]
- Rivas-Pérez, I.M.; Conde-Cid, M.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. As(V)/Cr(VI) retention on un-amended and waste-amended soil samples: Competitive experiments. Environ. Sci. Pollut. Res. 2017, 24, 1051–1059. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 11–23. [Google Scholar] [CrossRef]
- Githinji, L.J.M.; Musey, M.K.; Ankumah, R.O. Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water Air Soil Pollut. 2011, 219, 191–201. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Al-Musawi, T.J.; Kareem, S.L.; Zarrabi, M.; Al-Mabreh, A.M. Simultaneous adsorption of tetracycline, amoxicillin and ciprofloxacin by pistacho shell powder coates with zinc oxide nanoparticles. Arab. J. Chem. 2020, 13, 4629–4643. [Google Scholar] [CrossRef]
- Shahrouzi, J.R.; Sakineh, M.; Ebadi, A.; Tiwfighi, F.; Bakhti, F. Investigation of effective parameters on adsorption of amoxicillin from aqueous medium onto activated carbon. Adv. Environ. Technol. 2019, 2, 107–114. [Google Scholar]
- Zhi, D.; Yang, D.; Zheng, Y.; Yang, Y.; HE, Y.; Luo, L.; Zhou, Y. Current progress in the adsorption, transport and biodegradation of antibiotics in soil. J. Environ. Manag. 2019, 251, 109598–109605. [Google Scholar] [CrossRef] [PubMed]
- Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Souza, L.S.; Martíns, A.C.; Silva, T.L.; Santos Junior, O.O.; Visentainer, J.V.; Almeida, V.C. NaOH-actived carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem. Eng. J. 2016, 288, 778–788. [Google Scholar] [CrossRef]
- Conde-Cid, M.; Fernández, D.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Arias-Estévez, M.; Álvarez-Rodríguez, E. Influence of mussel shell, oak ash and pine bark on the adsorption and desorption of sulfonamides in agricultural soils. J. Environ. Manag. 2020, 261, 110221–110231. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Behnajady, M.A.; Bimeghdar, S. Synthesis of mesoporous NiO nanoparticles and their application in the adsorption of Cr (VI). Chem. Eng. J. 2014, 239, 105–113. [Google Scholar] [CrossRef]
- Barceló, H.A.; Santos, S.C.; Botelho, C.M. Tannin-based biosorbents for environmental applications–A review. Chem. Eng. J. 2016, 303, 575–587. [Google Scholar] [CrossRef]
- Homem, V.; Alves, A.; Santos, L. Amoxicillin removal from aqueous matrices by sorption with almond shell ashes. Int. J. Environ. Anal. Chem. 2010, 90, 1063–1084. [Google Scholar] [CrossRef]
- Chauhan, M.; Saini, V.K.; Suthar, S. Ti-pillared montmorillonite clay for adsorptive removal of amoxicillin, imipramine, diclofenac-sodium, and paracetamol from water. J. Hazard. Mater. 2020, 399, 122832–122845. [Google Scholar] [CrossRef]
Soils and Mixtures | pH | Soils and Mixtures | pH |
---|---|---|---|
M1 | 5.33 | M3 | 5.01 |
M1 + A | 6.93 | M3 + A | 6.93 |
M1 + MS | 5.29 | M3 + MS | 5.46 |
M1 + PB | 4.92 | M3 + PB | 4.79 |
M2 | 5.65 | VO | 6.04 |
M2 + A | 7.04 | VO + A | 7.81 |
M2 + MS | 5.76 | VO + MS | 5.92 |
M2 + PB | 5.24 | VO + PB | 5.35 |
Freundlich | Langmuir | Linear | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | KF | Error | n | Error | R2 | KL | Error | qm | Error | R2 | Kd | Error | R2 |
M1 | 50.79 | 34.56 | 0.274 | 0.344 | 0.723 | -- | -- | -- | -- | -- | 3.699 | 0.122 | 0.983 |
M1 + A | -- | -- | -- | -- | -- | 0.78 | 0.209 | 2066.7 | 0 | 0.344 | 1525.8 | 358.85 | 0.344 |
M1 + MS | 139.24 | 36.56 | 0.191 | 0.145 | 0.745 | 27.983 | 29.168 | 129 | 30.23 | 0.746 | -- | -- | -- |
M1+ PB | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
M2 | 11.81 | 4.224 | 0.676 | 0.141 | 0.896 | 0.074 | 0.039 | 140.85 | 40.68 | 0.935 | 5.057 | 0.568 | 0.813 |
M2 + A | 31.042 | 6.881 | 0.758 | 0.16 | 0.932 | -- | -- | -- | -- | -- | 22.265 | 1.671 | 0.911 |
M2 + MS | 40.022 | 3.142 | 0.672 | 0.062 | 0.986 | 0.183 | 0.064 | 243.06 | 53.74 | 0.984 | 26.378 | 1.625 | 0.939 |
M2 + PB | 91.91 | 6.984 | 0.391 | 0.108 | 0.923 | 1.725 | 0.795 | 154 | 27.49 | 0.934 | 69.95 | 11.36 | 0.633 |
M3 | 19.17 | 4.626 | 0.67 | 0.114 | 0.928 | 0.124 | 0.049 | 161.82 | 34.48 | 0.961 | 3.084 | 0.113 | 0.978 |
M3 + A | -- | -- | -- | -- | -- | 0.05 | 0 | -- | -- | -- | -- | -- | -- |
M3 + MS | 107.418 | 7.279 | 0 | 0.038 | 0.978 | 103.812 | 287.076 | -- | -- | -- | -- | -- | -- |
M3 + PB | 98.89 | 11.05 | 0.282 | 0.15 | 0.85 | 7.342 | 6.343 | 112.88 | 20.25 | 0.85 | 94.94 | 15.65 | 0.622 |
VO | 9.579 | 2.155 | 0.806 | 0.091 | 0.974 | 0.037 | 0.017 | 232.67 | 75.91 | 0.982 | 5.934 | 0.312 | 0.957 |
VO + A | 10.99 | 2.246 | 0.892 | 0.094 | 0.982 | -- | -- | -- | -- | -- | 8.694 | 0.313 | 0.979 |
VO + MS | 10.25 | 4.764 | 0.795 | 0.196 | 0.893 | -- | -- | -- | -- | -- | 6.287 | 0.571 | 0.875 |
VO + PB | 109.63 | 14.06 | 0.766 | 0.214 | 0.815 | -- | -- | -- | -- | -- | 112.34 | 13.83 | 0.778 |
C0 (µmol L−1) | |||||||
---|---|---|---|---|---|---|---|
Sample | 2.5 | 5 | 10 | 20 | 30 | 40 | 50 |
M1 | 0.349 (10.9) | 1.181 (12.5) | 2.331 (12.8) | 2.819 (11.1) | 4.781 (7.2) | 4.816 (11.6) | 6.21 (16.9) |
M1 + A | 0 (0) | 0 (0) | 0 (0) | 0.414 (0.79) | 1.698 (2.26) | 2.482 (2.51) | 5.062 (4.10) |
M1 + MS | 0 (0) | 0 (0) | 0 (0) | 0.233 (0.44) | 2.259 (3.05) | 3.943 (3.98) | 6.105 (4.99) |
M1 + PB | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0.824 (1.09) | 0.834 (0.84) | 1.851 (1.50) |
M2 | 0.767 (9.25) | 1.339 (12.19) | 3.029 (16.12) | 5.032 (13.17) | 5.211 (6.07) | 11.504 (8.07) | 18.489 (8.36) |
M2 + A | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0.935 (0) |
M2 + MS | 0 (0) | 0.047 (0.34) | 0.176 (0.77) | -- | 0.69 (0.99) | 1.061 (1.16) | 3.488 (3.09) |
M2 + PB | -- | 0.164 (1.13) | 0.329 (1.35) | 0.713 (1.46) | 1.075 (1.46) | 1.788 (1.83) | 2.597 (2.19) |
M3 | 0.384 (7.45) | 0.828 (8.88) | 2.6 (10.40) | 4.639 (6.11) | -- | 6.151 (9.33) | 6.107 (9.67) |
M3 + A | 0.283 (3.82) | 0.313 (2.45) | -- | 0.949 (1.80) | 1.055 (1.40) | 2.319 (2.31) | -- |
M3 + MS | -- | 0.258 (2.01) | -- | 2.488 (4.74) | 2.694 (3.58) | -- | 4.684 (3.79) |
M3 + PB | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0.14 (0.14) | 1.276 (1.05) |
VO | 0.357 (7.67) | 0.735 (13.41) | 2.115 (13.85) | 2.446 (8.58) | 4.741 (8.15) | 8.139 (6.26) | 8.682 (7.68) |
VO + A | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
VO + MS | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
VO + PB | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0.219 (0.30) | 0.712 (0.73) | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cela-Dablanca, R.; Barreiro, A.; Rodríguez-López, L.; Santás-Miguel, V.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Amoxicillin Retention/Release in Agricultural Soils Amended with Different Bio-Adsorbent Materials. Materials 2022, 15, 3200. https://doi.org/10.3390/ma15093200
Cela-Dablanca R, Barreiro A, Rodríguez-López L, Santás-Miguel V, Arias-Estévez M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A. Amoxicillin Retention/Release in Agricultural Soils Amended with Different Bio-Adsorbent Materials. Materials. 2022; 15(9):3200. https://doi.org/10.3390/ma15093200
Chicago/Turabian StyleCela-Dablanca, Raquel, Ana Barreiro, Lucia Rodríguez-López, Vanesa Santás-Miguel, Manuel Arias-Estévez, María J. Fernández-Sanjurjo, Esperanza Álvarez-Rodríguez, and Avelino Núñez-Delgado. 2022. "Amoxicillin Retention/Release in Agricultural Soils Amended with Different Bio-Adsorbent Materials" Materials 15, no. 9: 3200. https://doi.org/10.3390/ma15093200
APA StyleCela-Dablanca, R., Barreiro, A., Rodríguez-López, L., Santás-Miguel, V., Arias-Estévez, M., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., & Núñez-Delgado, A. (2022). Amoxicillin Retention/Release in Agricultural Soils Amended with Different Bio-Adsorbent Materials. Materials, 15(9), 3200. https://doi.org/10.3390/ma15093200