The Auto-Combustion Method Synthesized Eu2O3- ZnO Nanostructured Composites for Electronic and Photocatalytic Applications
Abstract
:1. Introduction
2. Experimental Techniques
2.1. Material Growth
2.2. Devices and Measurements
2.3. Photocatalytic Measurements
2.3.1. Design of the Ultraviolet-Visible Photoreactor
2.3.2. Photocatalytic Irradiation
3. Results and Discussions
3.1. X-ray Diffraction (XRD) Pattern
3.2. SEM Analysis
3.3. Spectroscopic Analysis
3.4. Optical Characterizations
3.4.1. Optical Diffused Reflectance (ODR) and Absorption Index
3.4.2. Optical Energy Bandgaps
3.5. Photocatalytic Activity
3.5.1. Photodegradation of Organic Compounds under Investigation Using Prepared Samples
3.5.2. Kinetic Studies of the Photocatalytic Degradation Process
3.5.3. Proposed Mechanism of Photodegradation of MB and Ph
3.5.4. Detection of Active Species Responsible for the Photocatalytic Degradation Process
3.5.5. Recycling of the Prepared Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ren, Y.-Z.; Wu, Z.-L.; Franke, M.; Braeutigam, P.; Ondruschka, B.; Comeskey, D.J.; King, P.M. Sonoelectrochemical degradation of phenol in aqueous solutions. Ultrason. Sonochem. 2013, 20, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, L.J.; Vijaya, J.J.; Kayalvizhi, K.; Sekaran, G. Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by a two-stage process. Chem. Eng. J. 2007, 132, 279–287. [Google Scholar] [CrossRef]
- Jin, X.; Gao, J.; Zha, J.; Xu, Y.; Wang, Z.; Giesy, J.P.; Richardson, K.L. A tiered ecological risk assessment of three chlorophenols in Chinese surface waters. Environ. Sci. Pollut. Res. 2014, 19, 1544–1554. [Google Scholar] [CrossRef] [PubMed]
- Blasco, R.; Castillo, F. Characterization of 2,4-dinitrophenol uptake by Rhodobacter capsulatus. Pestic. Biochem. Physiol. 1997, 58, 1–6. [Google Scholar] [CrossRef]
- You, Q.; Cai, H.; Hu, Z.; Liang, P.; Prucnal, S.; Zhou, S.; Sun, J.; Xu, N.; Wu, J. Blue shift in absorption edge and widening of band gap of ZnO by Al doping and Al–N co-doping. J. Alloys Compd. 2015, 644, 528–533. [Google Scholar] [CrossRef]
- Choi, H.W.; Lee, K.S.; Theodore, N.D.; Alford, T.L. Improved performance of ZnO nanostructured bulk heterojunction organic solar cells with nanowire-density modified by yttrium chloride introduction into solution. Sol. Energy Mater. Sol. Cells 2013, 117, 273–278. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Kong, J.; Jia, H.; Yu, M. ZnO microspheres: Controllable preparation and optical properties. Superlattices Microstruct. 2015, 86, 228–235. [Google Scholar] [CrossRef]
- Senthilvelan, S.; Chandraboss, V.L.; Karthikeyan, B.; Natanapatham, L.; Murugavelu, M. TiO2, ZnO and nano bimetallic silica catalyzed photodegradation of methyl green. Mater. Sci. Semicond. Process. 2013, 16, 185–192. [Google Scholar] [CrossRef]
- Kaneva, N.; Stambolova, I.; Blaskov, V.; Dimitriev, Y.; Bojinova, A.; Dushkin, C. A comparative study on the photocatalytic efficiency of ZnO thin films prepared by spray pyrolysis and sol-gel method. Surf. Coat. Technol. 2012, 207, 5–10. [Google Scholar] [CrossRef]
- Zhong, J.B.; Li, J.Z.; Lu, Y.; He, X.Y.; Zeng, J.; Hu, W.; Shen, Y.C. Fabrication of Bi3+-doped ZnO with enhanced photocatalytic performance. Appl. Surf. Sci. 2012, 258, 4929–4933. [Google Scholar] [CrossRef]
- Fu, M.; Li, Y.; Wu, S.; Lu, P.; Liu, J.; Dong, F. Sol-gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci. 2011, 258, 1587–1591. [Google Scholar] [CrossRef]
- Jia, X.; Fan, H.; Afzaal, M.; Wu, X.; O’Brien, P. Solid-state synthesis of tin-doped ZnO at room temperature: Characterization and its enhanced gas sensing and photocatalytic properties. J. Hazard. Mater. 2011, 193, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Q.; Xu, J.; Ma, S. Synthesis of Pd/ZnO nanocomposites with a high photocatalytic performance by a solvothermal method. Appl. Surf. Sci. 2012, 258, 10104–10109. [Google Scholar] [CrossRef]
- Patil, A.B.; Patil, K.R.; Pardeshi, S.K. Eco-friendly synthesis and solar photocatalytic activity of Si-doped ZnO. J. Hazard. Mater. 2010, 183, 315–323. [Google Scholar] [CrossRef]
- Li, L.; Wang, W.; Liu, H.; Liu, X.; Song, Q.; Ren, S. First-principles calculations of electronic band structure and optical properties of Cr-doped ZnO. J. Phys. Chem. C 2009, 113, 8460–8464. [Google Scholar] [CrossRef]
- Peralta, M.d.R.; Pal, U.; Zeferino, R.S. Photoluminescence (PL) quenching and enhanced photocatalytic activity of Au-decorated ZnO nanorods fabricated through microwave-assisted chemical synthesis. ACS Appl. Mater. Interfaces 2012, 4, 4807–4816. [Google Scholar] [CrossRef]
- Yayapao, O.; Thongtem, T.; Phuruangrat, A.; Thongtem, S. Ultrasonic-assisted synthesis of Nd-doped ZnO for photocatalysis. Mater. Lett. 2013, 90, 83–86. [Google Scholar] [CrossRef]
- Yayapao, O.; Thongtem, T.; Phuruangrat, A.; Thongtem, S. Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties. J. Alloys Compd. 2013, 576, 72–79. [Google Scholar] [CrossRef]
- Yao, S.; Sui, C.; Shi, Z. Preparation and characterization of visible-light-driven europium doped mesoporous titania photocatalyst. J. Rare Earths 2011, 29, 929–933. [Google Scholar] [CrossRef]
- Yang, L.L.; Wang, Z.; Zhang, Z.Q.; Sun, Y.F.; Gao, M. Surface effects on the optical and photocatalytic properties of graphene-like ZnO: Eu3þ nanosheets. J. Appl. Phys. 2013, 113, 033514. [Google Scholar] [CrossRef] [Green Version]
- Li, F.H.; Liu, H.; Yu, L.X. Preparation, photoluminescence and photocatalytic properties of ZnO: Eu3+ nanocrystals. J. Nanosci. Nanotechnol. 2013, 13, 5115–5118. [Google Scholar] [CrossRef] [PubMed]
- Rabenstein, D.L. Applications of paramagnetic shift reagents in proton magnetic resonance spectrometry: Analysis of alcohol mixtures. Anal. Chem. 1971, 43, 1599–1605. [Google Scholar] [CrossRef]
- Chaudhary, S.; Umar, A. Glycols functionalized fluorescent Eu2O3 nanoparticles: Functionalization effect on the structural and optical properties. J. Alloys Compd. 2016, 682, 160–169. [Google Scholar] [CrossRef]
- Sungeun, H.; Sharma, S.K.; Lee, S.; Lee, Y.; Kim, C.; Lee, B.; Lee, H.; Kim, D.Y. Effects of Y contents on surface, structural, optical, and electrical properties for Y-doped ZnO thin films. Thin Solid Film. 2014, 558, 27–30. [Google Scholar]
- Hsieh, P.-T.; Chuang, R.-K.; Chang, C.-Q.; Wang, C.-M.; Chang, S.-J. Optical and structural characteristics of yttrium doped ZnO films using sol-gel technology. J. Sol-Gel Sci. Technol. 2011, 58, 42–47. [Google Scholar] [CrossRef]
- Sayed, A.S.; Rabie, K.; Salama, I. Studies on europium separation from middle rare earth concentrate by in situ zinc reduction technique. Hydrometallurgy 2005, 9, 145–154. [Google Scholar] [CrossRef]
- Nassar, E.J.; Ciuffi, K.J.; Calefi, P.S.; Ávila, L.; Bandeira, L.C.; Cestari, A.; de Faria, E.H.; Marçal, A.L.; Matos, M., III. Europium III: Different Emission Spectra in Different Matrices, the Same Element; Nova Science Publishers: Hauppauge, NY, USA, 2010; pp. 1–88. [Google Scholar]
- Hussien, M.S.A.; Mohammed, M.I.; Yahia, I.S. Flexible photocatalytic membrane based on CdS/PMMA polymeric nanocomposite films: Multifunctional materials. Environ. Sci. Pollut. Res. 2020, 27, 45225–45237. [Google Scholar] [CrossRef]
- Aydın, C.; El-Sadek, M.S.A.; Zheng, K.; Yahia, I.S.; Yakuphanoglu, F. Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol-gel calcination technique. Opt. Laser Technol. 2013, 48, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.H.; Xin, J.H.Z.; Yang, Y.; Liu, H.F.; Xu, L.M.; Hu, J.H. The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites. Appl. Surf. Sci. 2004, 227, 312. [Google Scholar] [CrossRef]
- Callister, W.D. Materials Science and Engineering: An Introduction, 4th ed.; John Wiley & Sons: NY, New York, USA, 1997. [Google Scholar]
- Padiyan, D.P.; Marikini, A.; Murli, K.R. Influence of thickness and substrate temperature on electrical and photoelectrical properties of vacuum-deposited CdSe thin films. Mater. Chem. Phys. 2002, 78, 51–58. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, R.G.; Singh, N.; Kapoor, A.; Mehra, R.M.; Purohit, L.P. Synthesis and characterization of aluminum–boron Co-doped ZnO nanostructures. Mater. Res. Bull. 2013, 48, 362–366. [Google Scholar] [CrossRef]
- Davis, E.A.; Mott, N.F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 1970, 22, 903–922. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Sin, J.C.; Lam, S.M.; Satoshi, I.; Lee, K.T.; Mohamed, A.R. Sunlight photocatalytic activity enhancement and mechanism of novel europium-doped ZnO hierarchical micro/nanospheres for degradation of phenol. Appl. Catal. B Environ. 2014, 148, 258–268. [Google Scholar] [CrossRef]
- Chang, X.; Huang, J.; Tan, Q.; Wang, M.; Ji, G.; Deng, S.; Yu, G. Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation. Catal. Commun. 2009, 10, 1957–1961. [Google Scholar] [CrossRef]
- Kuriakose, S.; Satpati, B.; Mohapatra, S. Enhanced photocatalytic activity of Co-doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Phys. Chem. Chem. Phys. 2014, 16, 12741–12749. [Google Scholar] [CrossRef]
- Minero, C.; Mariella, G.; Maurino, V.; Pelizzetti, E. Photocatalytic transformation of organic compounds in the presence of inorganic anions. 1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system. Langmuir 2000, 16, 2632–2641. [Google Scholar] [CrossRef]
- Kayaci, F.; Vempati, S.; Donmez, I.; Biyikli, N.; Uyar, T. Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: A bottom-up approach to control defect density. Nanoscale 2014, 6, 10224–10234. [Google Scholar] [CrossRef] [Green Version]
- Tsonos, C. Comments on frequency-dependent AC conductivity in polymeric materials at the low-frequency regime. Curr. Appl. Phys. 2019, 19, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J.; Zhu, Y. Luminescence and photocatalytic activity of ZnO nanocrystals: Correlation between structure and property. Inorg. Chem. 2007, 46, 6675–6682. [Google Scholar] [CrossRef]
- Kumar, V.; Gohain, M.; Kumar, V.; Tonder, J.H.V.; Bezuidenhoudt, B.C.B.; Ntwaeaborwa, O.M.; Swart, H.C. Synthesis of quinoline based heterocyclic compounds for blue lighting application. Opt. Mater. 2015, 50, 275–281. [Google Scholar] [CrossRef]
- Dong, X.U.; Jiang, B.; Jiao, L.; Cui, F.-D.; Xu, H.-X.; Yang, Y.-T.; Yu, R.-H.; Cheng, X.-N. Sol–gel synthesis of Y2O3-doped ZnO thin films varistors and their electrical properties. Trans. Nonferrous Met. Soc. China 2012, 22 (Suppl. S1), s110–s114. [Google Scholar]
- Murowski, L.; Barczynski, R.J. Dielectric Properties of Transition Metal Oxide Glasses. J. Non-Cryst. Solids 1995, 185, 84. [Google Scholar] [CrossRef]
- Chauhan, S.; Kumar, M.; Chhoker, S.; Katyal, S.C.; Awana, V.P.S. Structural, vibrational, optical, and magnetic properties of sol-gel derived Nd-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 2013, 24, 5102–5110. [Google Scholar] [CrossRef]
- Chao, L.C.; Huang, J.W.; Chang, C.W. Annealing effects on the properties of Nd containing ZnO nanoparticles prepared by sol-gel process. Physica B 2009, 404, 1301. [Google Scholar] [CrossRef]
- SowriBabun, K.; Reddy, A.R.; Sujatha, C.; Reddy, K.V. Effects of precursor, temperature, surface area and excitation wavelength on photoluminescence of ZnO/mesoporous silica nanocomposite. Ceram. Int. 2013, 39, 3055–3064. [Google Scholar] [CrossRef]
- Zhang, W.C.; Wu, X.L.; Chen, H.T.; Zhu, J.; Huang, G.S. The Excitation wavelength dependence of the visible photoluminescence from amorphous ZnO granular films. J. Appl. Phys. 2008, 103, 093718. [Google Scholar] [CrossRef]
- El-Kabbany, F.; Taha, S.; Hafez, M. A study of the phase transition of reheated diphenyl carbazide (DPC) by using UV spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 128, 481–488. [Google Scholar] [CrossRef]
- Ishii, H.; Hayashi, N.; Ito, E.; Washizu, Y.; Sugi, K.; Kimura, Y.; Seki, K. Metal Interfaces: Examination of Fermi Level Alignment. Phys. Org. Semicond. 2006, 3, 69. [Google Scholar]
- Shivakumara, C.; John, A.K.; Behera, S.; Dhananjaya, N.; Saraf, R. Photoluminescence and photocatalytic properties of Eu3+-doped ZnO nanoparticles synthesized by the nitrate-citrate gel combustion method. Eur. Phys. J. Plus 2017, 132, 44. [Google Scholar] [CrossRef]
- Poornaprakash, B.; Chalapathi, U.; Sekhar, M.C.; Rajendar, V.; Prabhakar, S.V.; Vattikuti, S.P.; Reddy, M.S.P.; Suh, Y.; Park, S.H. Effect of Eu3+ on the morphology, structural, optical, magnetic, and photocatalytic properties of ZnO nanoparticles. Superlattices Microstruct. 2018, 123, 154–163. [Google Scholar] [CrossRef]
- Hernández-Carrillo, M.A.; Torres-Ricárdez, R.; García-Mendoza, M.F.; Ramírez-Morales, E.; Rojas-Blanco, L.; Díaz-Flores, L.L.; Sepúlveda-Palacios, G.E.; Paraguay-Delgado, F.; Pérez-Hernández, G. Eu-modified ZnO nanoparticles for applications in photocatalysis. Catal. Today 2010, 349, 191–197. [Google Scholar] [CrossRef]
- Trandafilović, L.V.; Jovanović, D.J.; Zhang, X.; Ptasińska, S.; Dramićanin, M.D. Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO: Eu nanoparticles. Appl. Catal. B Environ. 2017, 203, 740–752. [Google Scholar] [CrossRef] [Green Version]
- Vaiano, V.; Matarangolo, M.; Sacco, O.; Sannino, D. Photocatalytic Removal of Eriochrome Black T Dye over ZnO Nanoparticles Doped with Pr, Ce or Eu. Chem. Eng. Trans. 2017, 57, 625–630. [Google Scholar]
- Franco, P.; Sacco, O.; De Marco, I.; Sannino, D.; Vaiano, V. Photocatalytic Degradation of Eriochrome Black-T Azo Dye Using Eu-doped ZnO Prepared by Supercritical Antisolvent Precipitation Route: A Preliminary Investigation. Top. Catal. 2020, 63, 1193–1205. [Google Scholar] [CrossRef]
- Phuruangrat, A.; Yayapao, O.; Thongtem, T.; Thongtem, S. Synthesis and Characterization of Europium-Doped Zinc Oxide Photocatalyst. J. Nanomater. 2014, 2014, 367529. [Google Scholar] [CrossRef] [Green Version]
- Zong, Y.; Li, Z.; Wang, X.; Ma, J.; Men, Y. Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles. Ceram. Int. 2014, 40, 10375–10382. [Google Scholar] [CrossRef]
- Balachandran, S.; Jothi, K.J.; Selvakumar, K.; Bhat, D.K.; Sathiyanarayanan, K.; Swaminathan, M. Solar active ZnO–Eu2O3 for energy and environmental applications. Mater. Chem. Phys. 2020, 256, 123624. [Google Scholar] [CrossRef]
- Li, H.; Li, W.; Gu, S.; Wang, F.; Zhou, H.; Liu, X.; Ren, C. Enhancement of photocatalytic activity in Tb/Eu co-doped Bi2 MoO6: The synergistic effect of Tb–Eu redox cycles. RSC Adv. 2016, 6, 48089–48098. [Google Scholar] [CrossRef]
- Rauf, M.A.; Meetani, M.A.; Hisaindee, S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 2011, 276, 13–27. [Google Scholar] [CrossRef]
- Li, Y.; Niu, J.; Yin, L.; Wang, W.; Bao, Y.; Chen, J.; Duan, Y. Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on superoxide radicals. J. Environ. Sci. 2011, 23, 1911–1918. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Yilmaz, S.; Turkoglu, O.; Ari, M.; Belenli, I. Electrical conductivity of the ionic conductor tetragonal (Bi2O3)1-x(Eu2O3)x. Ceramica 2011, 57, 185–192. [Google Scholar] [CrossRef]
- Gu, S.; Li, W.; Bian, Y.; Wang, F.; Li, H.; Liu, X. Highly-visible-light photocatalytic performance derived from a lanthanide self-redox cycle in Ln2O3/BiVO4 (ln: Sm, Eu, Tb) redox heterojunction. J. Phys. Chem. C 2016, 120, 19242–19251. [Google Scholar] [CrossRef]
- Yang, P.; Lu, C.; Hua, N.; Du, Y. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater. Lett. 2002, 57, 794–801. [Google Scholar] [CrossRef]
- Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Tang, J.T.; Chen, X.M.; Liu, Y.; Gong, W.; Peng, Z.S.; Cai, T.J.; Jin, L.W.; Deng, Q. Europium-doped mesoporous anatase with enhanced photocatalytic activity toward the elimination of gaseous methanol. J. Phys. Chem. Solids 2012, 73, 198–203. [Google Scholar] [CrossRef]
- Weber, A.S.; Grady, A.M.; Koodali, R.T. Lanthanide modified semiconductor photocatalysts. Catal. Sci. Technol. 2012, 2, 683–693. [Google Scholar] [CrossRef]
- Wu, X.H.; Qin, W.; Ding, X.B.; Wen, Y.; Liu, H.L.; Jiang, Z.H. Photocatalytic activity of Eu-doped TiO2 ceramic films prepared by microplasma oxidation method. J. Phys. Chem. Solids 2007, 68, 2387–2393. [Google Scholar]
- Li, J.; Zhang, Z.; Lang, J.; Wang, J.; Zhang, Q.; Wang, J.; Han, Q.; Yang, J. Tuning red emission and photocatalytic properties of highly active ZnO nanosheets by Eu addition. J. Lumin. 2018, 204, 573–580. [Google Scholar] [CrossRef]
- Kaneva, N.; Bojinova, A.; Papazova, K.; Dimitrov, D. Photocatalytic purification of dye contaminated seawater by lanthanide (La3+, Ce3+, Eu3+) modified ZnO. Catal. Today 2015, 252, 113–119. [Google Scholar] [CrossRef]
- Liu, W.; Sun, W.; Borthwick, A.G.; Wang, T.; Li, F.; Guan, Y. Simultaneous removal of Cr (VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping. J. Hazard. Mater. 2016, 317, 385–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. A critical review of rate constants for reactions of hydrated electrons, hydrogen atoms, and hydroxyl radicals (OH/O-) in an aqueous solution. J. Phys. Chem. Ref. Data 1998, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
Nanostructured Samples | Codes | Eu/Zn Molar% |
---|---|---|
Pure ZnO | S0 | - |
0.001 g Eu-doped ZnO | S1 | 0.0001 |
0.01 g Eu-doped ZnO | S2 | 0.001 |
0.1 g Eu-doped ZnO | S3 | 0.01 |
0.5 g Eu-doped ZnO | S4 | 0.05 |
1 g Eu-doped ZnO | S5 | 0.09 |
2.5 g Eu-doped ZnO | S6 | 0.21 |
5 g Eu-doped ZnO | S7 | 0.35 |
Samples | Mean Values from XRD | From SEM Analysis | ||
---|---|---|---|---|
Grain Size, (nm) | Dislocation Density, (nm)−2 | Lattice Strain | Grain Sizes, (nm) | |
Pure ZnO | 88.8 | |||
Phase 1 ZnO | 40.2 | 0.001 | 0.001 | |
Phase 2 carbon | 33.5 | 0.002 | 0.001 | |
0.001 g Eu-doped ZnO | 78.5 | |||
Phase 1 ZnO | 42.9 | 0.001 | 0.001 | |
Phase 2 Carbon | 30.6 | 0.002 | 0.001 | |
0.01 g Eu-doped ZnO | ||||
Phase 1 ZnO | 37.8 | 0.001 | 0.001 | |
Phase 2 Carbon | 13.6 | 0.005 | 0.003 | |
0.1 g Eu-doped ZnO | 75.1 | |||
Phase 1 ZnO | 25.3 | 0.003 | 0.002 | |
Phase 2 Carbon | 13.7 | 0.007 | 0.003 | |
0.5 g Eu-doped ZnO | 75.3 | |||
Phase 1 ZnO | 23.9 | 0.003 | 0.002 | |
Phase 2 Eu2O3 | 18.3 | 0.003 | 0.002 | |
1 g Eu-doped ZnO | 86.7 | |||
Phase 1 ZnO | 21.9 | 0.003 | 0.002 | |
Phase 2 Eu2O3 | 15.1 | 0.004 | 0.002 | |
2.5 g Eu-doped ZnO | 82.5 | |||
Phase 1 ZnO | 22.1 | 0.003 | 0.002 | |
Phase 2 Eu2O3 | 18.2 | 0.004 | 0.002 | |
5 g Eu-doped ZnO | 83.8 | |||
Phase 1 ZnO | 24.9 | 0.002 | 0.002 | |
Phase 2 Eu2O3 | 18.5 | 0.003 | 0.002 |
Samples | Eg1(d), eV | Eg1(ind), eV |
---|---|---|
S0 | 3.28 | 3.20 |
S1 | 3.27 | 3.19 |
S2 | 3.25 | 3.17 |
S3 | 3.29 | 3.21 |
S4 | 3.24 | 3.14 |
S5 | 3.31 | 3.23 |
S6 | 3.30 | 3.22 |
S7 | 3.26 | 3.18 |
Photocatalyst | Doping % | Method of Preparation | Organic Solution | Catalyst Load (g/L) | Irradiation Time | Energy Source | % Degradation | Ref. |
---|---|---|---|---|---|---|---|---|
Eu-doped ZnO | 2% | Co-precipitation | Phenol | 0.1 | 30 min | Sun light | 97.3% | [51] |
Eu-doped ZnO | 5% | Combustion method | MB | 0.05 | 150 min | UV-light | 100% | [52] |
Eu-doped ZnO | 3% | Co-precipitation | RhB | 0.02 | 50 min | UV-light | 100% | [53] |
Eu-doped ZnO | 1.62% | Co-precipitation | MB | 0.024 | 80 min | Halogen lamp | 99.3% | [54] |
Eu-doped ZnO | 1% | Co-precipitation in water | MB | 0.01 | 150 min | Osram Vitalux lamp | 90% | [55] |
Eu-doped ZnO | 3% | Co-precipitation in methanol | MO | 0.01 | 150 min | Osram Vitalux lamp | 62% | [55] |
Eu-doped ZnO | 0.46% | Co-precipitation | EBT | 3 | 180 min | UV-light | - | [56] |
Eu-doped ZnO | 3% | Supercritical antisolvent process | EBT | 3 | 240 min | UV-light | - | [57] |
Eu-doped ZnO | 3% | Co-precipitation | MB | 0.15 | 300 min | UV-light | 90.5% | [58] |
Eu-doped ZnO | 1% | Co-precipitation | MO | 0.1 | 180 min | UV-light | 95.3% | [59] |
Eu-doped ZnO | 9% | Hydrothermal | RhB | 0.1 | 75 min | Visible light | 99.2% | [60] |
Eu- doped ZnO | 0.5% | Combustion | MB | 0.1 | 80 min | Visible light | 100% | Present work |
Eu-doped ZnO | 1% | Combustion | Phenol | 0.1 | 60 min | Visible light | 100% | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlAbdulaal, T.H.; Ganesh, V.; AlShadidi, M.; Hussien, M.S.A.; Bouzidi, A.; Algarni, H.; Zahran, H.Y.; Abdel-wahab, M.S.; Yahia, I.S.; Nasr, S. The Auto-Combustion Method Synthesized Eu2O3- ZnO Nanostructured Composites for Electronic and Photocatalytic Applications. Materials 2022, 15, 3257. https://doi.org/10.3390/ma15093257
AlAbdulaal TH, Ganesh V, AlShadidi M, Hussien MSA, Bouzidi A, Algarni H, Zahran HY, Abdel-wahab MS, Yahia IS, Nasr S. The Auto-Combustion Method Synthesized Eu2O3- ZnO Nanostructured Composites for Electronic and Photocatalytic Applications. Materials. 2022; 15(9):3257. https://doi.org/10.3390/ma15093257
Chicago/Turabian StyleAlAbdulaal, Thekrayat H., Vanga Ganesh, Manal AlShadidi, Mai S. A. Hussien, Abdelfatteh Bouzidi, Hamed Algarni, Heba Y. Zahran, Mohamed Sh. Abdel-wahab, Ibrahim S. Yahia, and Samia Nasr. 2022. "The Auto-Combustion Method Synthesized Eu2O3- ZnO Nanostructured Composites for Electronic and Photocatalytic Applications" Materials 15, no. 9: 3257. https://doi.org/10.3390/ma15093257
APA StyleAlAbdulaal, T. H., Ganesh, V., AlShadidi, M., Hussien, M. S. A., Bouzidi, A., Algarni, H., Zahran, H. Y., Abdel-wahab, M. S., Yahia, I. S., & Nasr, S. (2022). The Auto-Combustion Method Synthesized Eu2O3- ZnO Nanostructured Composites for Electronic and Photocatalytic Applications. Materials, 15(9), 3257. https://doi.org/10.3390/ma15093257