Impact of Drying Conditions on Antioxidant Activity of Red Clover (Trifolium pratense), Sweet Violet (Viola odorata) and Elderberry Flowers (Sambucus nigra)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.1.1. Ethanolic Extracts Preparation
2.1.2. Preparation of Infusions
2.2. Methods
2.2.1. Total Polyphenol Content (TPC)
2.2.2. Monomeric Anthocyanins Content (MAC)
- MW (molecular weight) = 449.2 for cyanidin-3-glucoside,
- DF—dilution factor = 10,
- e—molar extinction coefficient = 26.900 for cyanidin-3-glucoside,
- l—optical path length (l = 1 cm).
2.2.3. Antioxidant Activity Analyses
Determination of Antioxidant Activity Using DPPH Free Radicals
Determination of Antioxidant Activity Using ABTS Free Radicals
- E0—absorbance of the reaction mixture at the beginning of the analysis,
- E10—absorbance of the reaction mixture at the beginning of the determination.
Determination of Antioxidant Activity by the FRAP Method
Determination of Reducing Force
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. Total Polyphenol Content (TPC)
3.2. Monomeric Anthocyanins Content (MAC)
3.3. Antioxidant Activity Analyses
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Chen, N.H.; Wei, S. Factors influencing consumers’ attitudes towards the consumption of edible flowers. Food Qual. Prefer. 2017, 56, 93–100. [Google Scholar] [CrossRef]
- Takahashi, J.A.; Rezende, F.A.G.G.; Moura, M.A.F.; Dominguete, L.C.B.; Sande, D. Edible flowers: Bioactive profile and its potential to be used in food development. Food Res. Int. 2020, 129, 108868. [Google Scholar] [CrossRef] [PubMed]
- Benvenuti, S.; Mazzoncini, M. The Biodiversity of Edible Flowers: Discovering New Tastes and New Health Benefits. Front. Plant Sci. 2021, 11, 1812. [Google Scholar] [CrossRef]
- Dos Santos, I.C.; Reis, S.N. Edible Flowers: Traditional and Current Use. Ornam. Hortic. 2021, 27, 438–445. [Google Scholar] [CrossRef]
- Gupta, Y.C.; Sharma, P.; Sharma, G.; Agnihotri, R. Edible Flowers. In Proceedings of the National Conference on Floriculture for Rural and Urban Prosperity in the Scenario of Climate Change, Pakyong, India, 16–18 February 2018; pp. 25–29. [Google Scholar]
- Zoric, L.; Merkulov, L.; Lukovic, J.; Boza, P. Comparative analysis of qualitative anatomical characters of Trifolium L. (Fabaceae) and their taxonomic implications: Preliminary results. Plant Syst. Evol. 2012, 298, 205–219. [Google Scholar] [CrossRef]
- Vlaisavljević, S.; Kaurinović, B.; Popović, M.; Vasiljević, S. Profile of phenolic compounds in Trifolium pratense L. extracts at different growth stages and their biological activities. Int. J. Food Prop. 2017, 20, 3090–3101. [Google Scholar] [CrossRef] [Green Version]
- Nelsen, J.; Ulbricht, C.; Barrette, E.P.; Mac, D.S.; Tsouronis, C.; Rogers, A.; Basch, S.; Hashmi, S.; Bent, S.; Basch, E. Red clover (Trifolium pratense) monograph: A clinical decision support tool. J. Herb. Pharmacother. 2002, 2, 49–72. [Google Scholar] [CrossRef]
- Tava, A.; Pecio, Ł.; Lo Scalzo, R.; Stochmal, A.; Pecetti, L. Phenolic Content and Antioxidant Activity in Trifolium Germplasm from Different Environments. Molecules 2019, 24, 298. [Google Scholar] [CrossRef] [Green Version]
- Mittal, P.; Gupta, V.; Goswami, M.; Thakur, N. Phytochemical and Pharmacological Potential of Viola odorata formulation and Evaluation of pH Triggered in-situ Ocular Gel of Ofloxacin View project In-situ Ocular Gel View project. Int. J. Pharmacogn. 2015, 2, 215–220. [Google Scholar]
- Singh, A.; Dhariwal, S. Navneet Traditional uses, Antimicrobial potential, Pharmacological properties and Phytochemistry of Viola odorata: A Mini Review. J. Phytopharm. 2018, 7, 103–105. [Google Scholar] [CrossRef]
- Fazeenah, A.; Quamri, M. Banafsha (Viola odorata Linn.)—A Review. World J. Pharm. Res. 2020, 9, 514–537. [Google Scholar]
- Mikulic-Petkovsek, M.; Samoticha, J.; Eler, K.; Stampar, F.; Veberic, R. Traditional elderflower beverages: A rich source of phenolic compounds with high antioxidant activity. J. Agric. Food Chem. 2015, 63, 1477–1487. [Google Scholar] [CrossRef] [PubMed]
- Viapiana, A.; Wesolowski, M. The Phenolic Contents and Antioxidant Activities of Infusions of Sambucus nigra L. Plant Foods Hum. Nutr. 2017, 72, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.M.; Cruz, R.R.P.; Gadelha, T.M.; da Silva, Á.G.F.; da Costa, F.B.; Ribeiro, W.S. Edible flowers: Beauty, health and nutrition. Res. Soc. Dev. 2020, 9, e336972994. [Google Scholar] [CrossRef]
- Flieger, J.; Flieger, W.; Baj, J.; Maciejewski, R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. Materials 2021, 14, 4135. [Google Scholar] [CrossRef]
- Pająk, M.; Szostak, M.; Sławiński, M. Badania geostatystyczne skażenia środowiska leśnego uroczyska grodzisko w bielańsko-tynieckim parku krajobrazowym. Arch. Fotogram. Kartogr. Teledetekcji 2012, 24, 245–256. [Google Scholar]
- AOAC. Determination of Moisture, Ash, Protein and Fat. Official Method of Analysis of the Association of Analytical Chemists, 18th ed.; AOAC: Washington, DC, USA, 2005. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Barnes, K.W.; Eisele, T.; Giusti, M.M.; Haché, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; et al. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, G.C.; Chen, H.Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Francik, S.; Francik, R.; Sadowska, U.; Bystrowska, B.; Zawiślak, A.; Knapczyk, A.; Nzeyimana, A. Identification of phenolic compounds and determination of antioxidant activity in extracts and infusions of salvia leaves. Materials 2020, 13, 5811. [Google Scholar] [CrossRef] [PubMed]
- Francik, S.; Knapik, P.; Łapczyńska-Kordon, B.; Francik, R.; Ślipek, Z. Values of Selected Strength Parameters of Miscanthus × Giganteus Stalk Depending on Water Content and Internode Number. Materials 2022, 15, 1480. [Google Scholar] [CrossRef] [PubMed]
- Łapczyńska-Kordon, B.; Ślipek, Z.; Słomka-Polonis, K.; Styks, J.; Hebda, T.; Francik, S. Physicochemical Properties of Biochar Produced from Goldenrod Plants. Materials 2022, 15, 2615. [Google Scholar] [CrossRef] [PubMed]
- Demasi, S.; Caser, M.; Donno, D.; Enri, S.R.; Lonati, M.; Scariot, V. Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture. Folia Hortic. 2021, 33, 27–48. [Google Scholar] [CrossRef]
- Biernacka, B.; Dziki, D.; Kozłowska, J.; Kowalska, I.; Soluch, A. Dehydrated at different conditions and powdered leek as a concentrate of biologically active substances: Antioxidant activity and phenolic compound profile. Materials 2021, 14, 6127. [Google Scholar] [CrossRef]
- Młynarczyk, K.; Walkowiak-Tomczak, D.; Łysiak, G.P. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods 2018, 40, 377–390. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Silva, A.M.; Nunes, F.M. Sambucus nigra L. Fruits and Flowers: Chemical Composition and Related Bioactivities. Food Rev. Int. 2020, 1–29. [Google Scholar] [CrossRef]
- Hart, E.H.; Onime, L.A.; Davies, T.E.; Morphew, R.M.; Kingston-Smith, A.H. The effects of PPO activity on the proteome of ingested red clover and implications for improving the nutrition of grazing cattle. J. Proteom. 2016, 141, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kagan, I.A.; Dinkins, R.D.; Taylor, N.L.; Kagan, I.A.; Dinkins, R.D.; Taylor, N.L. Phenolic Profiles and Polyphenol Oxidase (PPO) Gene Expression of Red Clover (Trifolium pratense) Selected for Decreased Postharvest Browning. Am. J. Plant Sci. 2016, 7, 1478–1489. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.F.; Zhang, M.; Adhikari, B. The inactivation kinetics of polyphenol oxidase in mushroom (Agaricus bisporus) during thermal and thermosonic treatments. Ultrason. Sonochem. 2013, 20, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Selvi, K.Ç.; Kabutey, A.; Gürdil, G.A.K.; Herak, D.; Kurhan, Ş.; Klouček, P. The Effect of Infrared Drying on Color, Projected Area, Drying Time, and Total Phenolic Content of Rose (Rose electron) Petals. Plants 2020, 9, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefaniak, A.; Grzeszczuk, M. Effect of drying temperature and method of extract preparation on antioxidant activity of edible flowers of some ornamental plant species. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2020, 354, 17–28. [Google Scholar] [CrossRef]
- Fernandes, L.; Saraiva, J.A.; Pereira, J.A.; Casal, S.; Ramalhosa, E. Post-harvest technologies applied to edible flowers: A review: Edible flowers preservation. Food Rev. Int. 2019, 35, 132–154. [Google Scholar] [CrossRef]
- Tünde, J.; Pallag, A.; Marian, E.; Mureșan, M.E.; Stan, R.L.; Vicaș, L.G. The histo-anatomical investigation and the polyphenolic profile of antioxidant complex active ingredients from three Viola species. Farmacia 2019, 67, 634–640. [Google Scholar]
- Lamy, S.; Muhire, É.; Annabi, B. Antiproliferative efficacy of elderberries and elderflowers (Sambucus canadensis) on glioma and brain endothelial cells under normoxic and hypoxic conditions. J. Funct. Foods 2018, 40, 164–179. [Google Scholar] [CrossRef]
- Karioti, A.; Furlan, C.; Vincieri, F.F.; Bilia, A.R. Analysis of the constituents and quality control of Viola odorata aqueous preparations by HPLC-DAD and HPLC-ESI-MS. Anal. Bioanal. Chem. 2011, 399, 1715–1723. [Google Scholar] [CrossRef]
- Lee, S.G.; Brownmiller, C.R.; Lee, S.O.; Kang, H.W. Anti-Inflammatory and Antioxidant Effects of Anthocyanins of Trifolium pratense (Red Clover) in Lipopolysaccharide-Stimulated RAW-267.4 Macrophages. Nutrients 2020, 12, 1089. [Google Scholar] [CrossRef] [Green Version]
- Dawidowicz, A.L.; Wianowska, D.; Baraniak, B. The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT-Food Sci. Technol. 2006, 39, 308–315. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Łukomska, A.; Gutowska, I.; Kochman, J.; Janił, J.; Janda, K. Edible Flowers Extracts as a Source of Bioactive Compounds with Antioxidant Properties—In Vitro Studies. Appl. Sci. 2021, 11, 2120. [Google Scholar] [CrossRef]
- Benvenuti, S.; Pellati, F.; Melegari, M.; Bertelli, D. Polyphenols, Anthocyanins, Ascorbic Acid, and Radical Scavenging Activity of Rubus, Ribes, and Aronia. J. Food Sci. 2004, 69, FCT164–FCT169. [Google Scholar] [CrossRef]
- Khiya, Z.; Oualcadi, Y.; Gamar, A.; Berrekhis, F.; Zair, T.; Hilali, F.E.L. Correlation of Total Polyphenolic Content with Antioxidant Activity of Hydromethanolic Extract and Their Fractions of the Salvia officinalis Leaves from Different Regions of Morocco. J. Chem. 2021, 2021, 8585313. [Google Scholar] [CrossRef]
Intergroup Factors | p TPC 1 | p MAC 2 | p DPPH 3 | p ABTS 4 | p FRAP 5 | p RP 6 |
---|---|---|---|---|---|---|
Plant | 0.0000 * | 0.0000 * | 0.0000 * | 0.0000 * | 0.0000 * | 0.0000 * |
Drying | 0.0000 * | 0.0000 * | 0.0000 * | 0.0000 | 0.0000 * | 0.0000 * |
Extract | 0.0000 * | 0.0000 * | 0.0008 * | 0.0000 * | 0.0000 * | 0.0000 * |
Plant*Drying | 0.0000 * | 0.0000 * | 0.0000 * | 0.0000 | 0.0000 * | 0.0000 * |
Plant*Extract | 0.0000 * | 0.1595 | 0.0000 * | 0.0000 | 0.0000 * | 0.0000 * |
Drying*Extract | 0.0000 * | 0.0012 * | 0.0000 * | 0.0000 | 0.0000 * | 0.0000 * |
Plant*Drying*Extract | 0.0000 * | 0.0001 * | 0.0000 * | 0.0000 | 0.0000 * | 0.0000 * |
Parameters | TPC 1 | MAC 2 | DPPH 3 | ABTS 4 | FRAP 5 | RP 6 |
---|---|---|---|---|---|---|
TPC | 1 | 0.2354 | −0.7623 | −0.3197 | 0.9196 | 0.8629 |
MAC | 1 | 0.0048 | −0.1781 | 0.0994 | −0.0051 | |
DPPH | 1 | −0.0205 | −0.7908 | −0.8084 | ||
ABTS | 1 | −0.2799 | −0.0201 | |||
FRAP | 1 | 0.9602 | ||||
RP | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawiślak, A.; Francik, R.; Francik, S.; Knapczyk, A. Impact of Drying Conditions on Antioxidant Activity of Red Clover (Trifolium pratense), Sweet Violet (Viola odorata) and Elderberry Flowers (Sambucus nigra). Materials 2022, 15, 3317. https://doi.org/10.3390/ma15093317
Zawiślak A, Francik R, Francik S, Knapczyk A. Impact of Drying Conditions on Antioxidant Activity of Red Clover (Trifolium pratense), Sweet Violet (Viola odorata) and Elderberry Flowers (Sambucus nigra). Materials. 2022; 15(9):3317. https://doi.org/10.3390/ma15093317
Chicago/Turabian StyleZawiślak, Agnieszka, Renata Francik, Sławomir Francik, and Adrian Knapczyk. 2022. "Impact of Drying Conditions on Antioxidant Activity of Red Clover (Trifolium pratense), Sweet Violet (Viola odorata) and Elderberry Flowers (Sambucus nigra)" Materials 15, no. 9: 3317. https://doi.org/10.3390/ma15093317
APA StyleZawiślak, A., Francik, R., Francik, S., & Knapczyk, A. (2022). Impact of Drying Conditions on Antioxidant Activity of Red Clover (Trifolium pratense), Sweet Violet (Viola odorata) and Elderberry Flowers (Sambucus nigra). Materials, 15(9), 3317. https://doi.org/10.3390/ma15093317