Production of Dense Cu-10Sn Part by Laser Powder Bed Fusion with Low Surface Roughness and High Dimensional Accuracy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powder
2.2. L-PBF Processing
2.3. Characterization
3. Results and Discussion
3.1. Density
3.2. Surface Roughness
3.3. Accuracy
4. Conclusions
- The parameters that can help to achieve a dense structure with good productivity and high dimensional accuracy are as follows: a scan speed of 800 mm/s, laser power of 170 W, hatching distance of 0.11 mm and layer thickness of 30 μm.
- The parameters that can help to achieve a good surface roughness are as follows: laser power of 220 W, scan speed of 560 mm/s and hatching distance of 0.11 mm.
- The volumetric energy density does not provide a correct analysis of the energy necessary to melt the material to obtain dense components without cracks and pores due to its numerical expression which is excessively simplified with respect to the process. This could lead to the indication of energy values which can provide incorrect information.
- The determination of the density of samples produced with L-PBF using the Archimedes’ method is fast, but it is not reliable if the density of samples exceeds 99%. To evaluate in a more precise way the porosity of dense samples, careful image analysis should be carried out.
Author Contributions
Funding
Conflicts of Interest
References
- Mao, Z.; Zhang, D.Z.; Jiang, J.; Fu, G.; Zhang, P. Processing Optimisation, Mechanical Properties and Microstructural Evolution during Selective Laser Melting of Cu-15Sn High-Tin Bronze. Mater. Sci. Eng. A 2018, 721, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, S.D.; Dadbakhsh, S.; Vleugels, J.; Hofkens, J.; Van Puyvelde, P.; Yang, S.; Kruth, J.P.; Van Humbeeck, J.; Vanmeensel, K. Influence of Carbon Nanoparticle Addition (and Impurities) on Selective Laser Melting of Pure Copper. Materials 2019, 12, 2469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Zhu, H.; Hu, Z.; Zeng, X.; Zhong, F. Selective Laser Melting of Cu–10Zn Alloy Powder Using High Laser Power. Powder Technol. 2019, 342, 613–620. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, H.; Zhang, L.; Zhang, W.; Yang, H.; Zeng, X. Microstructure and Properties of High Strength and High Conductivity Cu-Cr Alloy Components Fabricated by High Power Selective Laser Melting. Mater. Lett. 2019, 237, 306–309. [Google Scholar] [CrossRef]
- Popovich, A.; Sufiiarov, V.; Polozov, I.; Borisov, E.; Masaylo, D.; Orlov, A. Microstructure and Mechanical Properties of Additive Manufactured Copper Alloy. Mater. Lett. 2016, 179, 38–41. [Google Scholar] [CrossRef]
- Wallis, C.; Buchmayr, B. Effect of Heat Treatments on Microstructure and Properties of CuCrZr Produced by Laser-Powder Bed Fusion. Mater. Sci. Eng. A 2019, 744, 215–223. [Google Scholar] [CrossRef]
- Sabelle, M.; Walczak, M.; Ramos-Grez, J. Scanning Pattern Angle Effect on the Resulting Properties of Selective Laser Sintered Monolayers of Cu-Sn-Ni Powder. Opt. Lasers Eng. 2018, 100, 1–8. [Google Scholar] [CrossRef]
- Barik, R.C.; Wharton, J.A.; Wood, R.J.K.; Tan, K.S.; Stokes, K.R. Erosion and Erosion-Corrosion Performance of Cast and Thermally Sprayed Nickel-Aluminium Bronze. Wear 2005, 259, 230–242. [Google Scholar] [CrossRef]
- Davis, J.R. ASM Speciality Handbook, Copper and Copper Alloys; ASM International: Materials Park, OH, USA, 2001; ISBN 2001022956. [Google Scholar]
- Scudino, S.; Unterdörfer, C.; Prashanth, K.G.; Attar, H.; Ellendt, N.; Uhlenwinkel, V.; Eckert, J. Additive Manufacturing of Cu-10Sn Bronze. Mater. Lett. 2015, 156, 202–204. [Google Scholar] [CrossRef]
- Maamoun, A.H.; Xue, Y.F.; Elbestawi, M.A.; Veldhuis, S.C. Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy. Materials 2018, 11, 2343. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.; Zhang, X.; Zhou, Z.; Zhou, Z.; Yang, Y.; Guo, X.; Wang, Z.; Wu, X.; Wang, G.; He, D. Thermal Effect on the Microstructure of the Lattice Structure Cu-10Sn Alloy Fabricated through Selective Laser Melting. J. Alloys Compd. 2019, 787, 903–908. [Google Scholar] [CrossRef]
- Deng, C.; Kang, J.; Feng, T.; Feng, Y.; Wang, X.; Wu, P. Study on the Selective Laser Melting of CuSn10 Powder. Materials 2018, 11, 614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, C.; Zhang, B.; Hemmasian Ettefagh, A.; Wen, H.; Yao, H.; Meng, W.J.; Guo, S. Mechanical, Thermal, and Corrosion Properties of Cu-10Sn Alloy Prepared by Laser-Powder-Bed-Fusion Additive Manufacturing. Addit. Manuf. 2020, 35, 101411. [Google Scholar] [CrossRef]
- Mehta, A.; Zhou, L.; Hyer, H.; Huynh, T.; Lu, B.; Graydon, K.; Drobner, E.J.; Park, S.H.; Sohn, Y. Microstructural Characteristics and Mechanical Properties of Additively Manufactured Cu–10Sn Alloys by Laser Powder Bed Fusion. Mater. Sci. Eng. A 2022, 838, 142775. [Google Scholar] [CrossRef]
- Mao, Z.; Zhang, D.Z.; Wei, P.; Zhang, K. Manufacturing Feasibility and Forming Properties of Cu-4Sn in Selective Laser Melting. Materials 2017, 10, 333. [Google Scholar] [CrossRef] [Green Version]
- Calignano, F.; Cattano, G.; Manfredi, D. Manufacturing of Thin Wall Structures in AlSi10Mg Alloy by Laser Powder Bed Fusion through Process Parameters. J. Mater. Process. Technol. 2018, 255, 773–783. [Google Scholar] [CrossRef]
- Manfredi, D.; Calignano, F.; Krishnan, M.; Canali, R.; Ambrosio, E.P.; Atzeni, E. From Powders to Dense Metal Parts: Characterization of a Commercial Alsimg Alloy Processed through Direct Metal Laser Sintering. Materials 2013, 6, 856–869. [Google Scholar] [CrossRef] [Green Version]
- Cherry, J.A.; Davies, H.M.; Mehmood, S.; Lavery, N.P.; Brown, S.G.R.; Sienz, J. Investigation into the Effect of Process Parameters on Microstructural and Physical Properties of 316L Stainless Steel Parts by Selective Laser Melting. Int. J. Adv. Manuf. Technol. 2014, 76, 869–879. [Google Scholar] [CrossRef] [Green Version]
- Bremen, S.; Meiners, W.; Diatlov, A. Selective Laser Melting: A Manufacturing Technology for the Future? Laser Technol. J. 2012, 9, 33–38. [Google Scholar] [CrossRef]
- Spierings, A.B.; Schneider, M.; Eggenberger, R. Comparison of Density Measurement Techniques for Additive Manufactured Metallic Parts. Rapid Prototyp. J. 2011, 17, 380–386. [Google Scholar] [CrossRef]
- Du Plessis, A.; Yadroitsev, I.; Yadroitsava, I.; Le Roux, S.G. X-ray Microcomputed Tomography in Additive Manufacturing: A Review of the Current Technology and Applications. 3D Print. Addit. Manuf. 2018, 5, 227–247. [Google Scholar] [CrossRef] [Green Version]
- Scipioni Bertoli, U.; Wolfer, A.J.; Matthews, M.J.; Delplanque, J.P.R.; Schoenung, J.M. On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting. Mater. Des. 2017, 113, 331–340. [Google Scholar] [CrossRef] [Green Version]
Element | Cu | Sn | P | Bi | Al | Si | Cr | Co | Fe | Other |
---|---|---|---|---|---|---|---|---|---|---|
Content measured (wt.%) | 88.7 | 10.9 | 0.351 | 0.013 | 0.007 | 0.006 | 0.006 | 0.005 | 0.004 | 0.008 |
Content declared (wt%) | Bal. | 10.92 | 0.33 | - | - | - | - | - | - | - |
Variable | Fixed | ||
---|---|---|---|
Parameters | Values | Parameters | Values |
v (mm/s) | 500, 560, 620, 680, 740, 800 | Layer thickness (µm) | 30 |
P (W) | 170, 195, 220 | Spot size (mm) | 0.1 |
hd (mm) | 0.05, 0.08, 0.11 | vcontour (mm/s) | 900 |
Pcontour (W) | 100 |
Sample | Process Parameters | Volume Rate [cm3/h] | Energy Density [J/mm3] | Experimental Density [%] | Hardness [HV] | ||
---|---|---|---|---|---|---|---|
v [mm/s] | P [W] | hd [mm] | |||||
1 | 500 | 170 | 0.05 | 2.70 | 226.7 | 99.48 ± 0.15 | 162 ± 15 |
2 | 500 | 195 | 0.08 | 4.32 | 162.5 | 99.81 ± 0.15 | 162 ± 6 |
3 | 500 | 220 | 0.11 | 5.94 | 133.3 | 99.86 ± 0.06 | 157 ± 7 |
4 | 560 | 170 | 0.05 | 3.02 | 202.4 | 99.6 ± 0.2 | 162 ± 10 |
5 | 560 | 195 | 0.08 | 4.84 | 145.1 | 99.84 ± 0.13 | 163 ± 4 |
6 | 560 | 220 | 0.11 | 6.65 | 119.0 | 99.8 ± 0.1 | 162 ± 13 |
7 | 620 | 170 | 0.08 | 5.36 | 114.2 | 99.4 ± 0.3 | 166 ± 4 |
8 | 620 | 195 | 0.11 | 7.37 | 95.3 | 99.47 ± 0.24 | 154 ± 7 |
9 | 620 | 220 | 0.05 | 3.35 | 236.6 | 99.7 ± 0.1 | 165 ± 4 |
10 | 680 | 170 | 0.11 | 8.08 | 75.8 | 99.32 ± 0.18 | 142 ± 13 |
11 | 680 | 195 | 0.05 | 3.67 | 191.2 | 99.52 ± 0.19 | 153 ± 7 |
12 | 680 | 220 | 0.08 | 5.88 | 134.8 | 99.66 ± 0.12 | 159 ± 12 |
13 | 740 | 170 | 0.08 | 6.39 | 95.7 | 99.33 ± 0.16 | 160 ± 3 |
14 | 740 | 195 | 0.11 | 8.79 | 79.9 | 99.5 ± 0.4 | 158 ± 1 |
15 | 740 | 220 | 0.05 | 4.00 | 198.2 | 99.83 ± 0.13 | 152 ± 12 |
16 | 800 | 170 | 0.11 | 9.50 | 64.4 | 98.7 ± 0.4 | 163 ± 2 |
17 | 800 | 195 | 0.05 | 4.32 | 162.5 | 99.64 ± 0.12 | 153 ± 6 |
18 | 800 | 220 | 0.08 | 6.91 | 114.6 | 99.77 ± 0.06 | 150 ± 15 |
Level | Larger-the-Better–S/N (dB) | ||
---|---|---|---|
Scan Speed | Laser Power | Hatching Distance | |
1 | 39.98 | 39.94 | 39.97 |
2 | 39.98 | 39.97 | 39.97 |
3 | 39.96 | 39.98 | 39.95 |
4 | 39.96 | ||
5 | 39.96 | ||
6 | 39.95 | ||
Delta | 0.03 | 0.04 | 0.02 |
Rank | 2 | 1 | 3 |
Source | DOF | Sum of Squares | F | p | Statistical Significance |
---|---|---|---|---|---|
Scan speed | 5 | 19.875 | 2.39 | 0.131 | Not significant |
Laser power | 2 | 48.176 | 24.46 | 0.002 | Highly Significant |
Hatching distance | 2 | 9.026 | 2.71 | 0.126 | Not Significant |
Residual Error | 8 | 13.323 | |||
Total | 17 | 90.400 |
Level | Smaller-the-Better–S/N (dB) | ||
---|---|---|---|
Scan Speed | Laser Power | Hatching Distance | |
1 | −14.84 | −19.22 | −16.83 |
2 | −15.04 | −16.61 | −16.01 |
3 | −17.49 | −14.44 | −17.44 |
4 | −18.10 | ||
5 | −17.37 | ||
6 | −17.71 | ||
Delta | 3.25 | 4.78 | 1.43 |
Rank | 2 | 1 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calignano, F.; Manfredi, D.; Marola, S.; Lombardi, M.; Iuliano, L. Production of Dense Cu-10Sn Part by Laser Powder Bed Fusion with Low Surface Roughness and High Dimensional Accuracy. Materials 2022, 15, 3352. https://doi.org/10.3390/ma15093352
Calignano F, Manfredi D, Marola S, Lombardi M, Iuliano L. Production of Dense Cu-10Sn Part by Laser Powder Bed Fusion with Low Surface Roughness and High Dimensional Accuracy. Materials. 2022; 15(9):3352. https://doi.org/10.3390/ma15093352
Chicago/Turabian StyleCalignano, Flaviana, Diego Manfredi, Silvia Marola, Mariangela Lombardi, and Luca Iuliano. 2022. "Production of Dense Cu-10Sn Part by Laser Powder Bed Fusion with Low Surface Roughness and High Dimensional Accuracy" Materials 15, no. 9: 3352. https://doi.org/10.3390/ma15093352
APA StyleCalignano, F., Manfredi, D., Marola, S., Lombardi, M., & Iuliano, L. (2022). Production of Dense Cu-10Sn Part by Laser Powder Bed Fusion with Low Surface Roughness and High Dimensional Accuracy. Materials, 15(9), 3352. https://doi.org/10.3390/ma15093352