Optoelectronic Properties of α-MoO3 Tuned by H Dopant in Different Concentration
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koppens, F.; Mueller, T.; Avouris, P.; Ferrari, A.; Vitiello, M.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Sun, Z.; Chang, H. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133–4156. [Google Scholar] [CrossRef]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Meric, I.; Han, M.Y.; Young, A.F.; Ozyilmaz, B.; Kim, P.; Shepard, K.L. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Fuhrer, M.S.; Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 2013, 8, 146–147. [Google Scholar] [CrossRef] [Green Version]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.; Kong, X.; Hu, Z.-X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Su, M.; Zheng, Z.; Wang, Y.; Gong, L.; Xie, F.; Zhang, W.; Luo, Z.; Luo, J.; Liu, P. Nanoscale insights into the hydrogenation process of layered α-MoO3. ACS Nano 2016, 10, 1662–1670. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Cook, J.B.; Lin, H.; Ko, J.S.; Tolbert, S.H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 2017, 16, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Su, M.; Zhou, Y.; Gong, L.; Zhao, C.; Chen, K.; Xie, F.; Zhang, W.; Chen, J.; Liu, P.; et al. Interaction at the silicon/transition metal oxide heterojunction interface and its effect on the photovoltaic performance. Phys. Chem. Chem. Phys. 2015, 17, 27409–27413. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Ren, X.; Zheng, X.; Liu, Y.; Pang, L.; Jiang, J.; Liu, S.F. 2D-MoO3 nanosheets for superior gas sensors. Nanoscale 2016, 8, 8696–8703. [Google Scholar] [CrossRef]
- He, R.; Chen, Z.; Lai, H.; Zhang, T.; Wen, J.; Chen, H.; Xie, F.; Yue, S.; Liu, P.; Chen, J. Van der waals transition-metal oxide for vis–MIR broadband photodetection via intercalation strategy. ACS Appl. Mater. Interfaces 2019, 11, 15741–15747. [Google Scholar] [CrossRef] [PubMed]
- Rabalais, J.W.; Colton, R.J.; Guzman, A.M. Trapped electrons in substoichiometric MoO3 observed by X-ray electron spectroscopy. Chem. Phys. Lett. 1974, 29, 131. [Google Scholar] [CrossRef]
- Scanlon, D.O.; Watson, G.W.; Payne, D.J.; Atkinson, G.R.; Egdell, R.G.; La, D.S.L. Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J. Phys. Chem. C 2010, 114, 4636–4645. [Google Scholar] [CrossRef]
- Xiang, D.; Han, C.; Zhang, J.; Chen, W. Gap states assisted MoO3 nanobelt photodetector with wide spectrum response. Sci. Rep. 2014, 4, 4891. [Google Scholar] [CrossRef]
- Xie, L.; Chen, T.; Chan, H.C.; Shu, Y.; Gao, Q. Hydrogen doping into MoO3 supports toward modulated metal-support interactions and efficient furfural hydrogenation on iridium nanocatalysts. Chem. Asian. J. 2018, 13, 641–647. [Google Scholar] [CrossRef]
- Hu, X.K.; Qian, Y.T.; Song, Z.T.; Huang, J.R.; Cao, R.; Xiao, J.Q. Comparative Study on MoO3 and HxMoO3 Nanobelts: Structure and Electric Transport. Chem. Mater. 2008, 20, 1527–1533. [Google Scholar] [CrossRef]
- Kovendhan, M.; Joseph, D.P.; Manimuthu, P.; Sambasivam, S.; Karthick, S.N.; Vijayarangamuthu, K.; Sendilkumar, A.; Asokan, K.; Kim, H.J.; Choi, B.C.; et al. ‘Li’ doping induced physicochemical property modifications of MoO3 thin films. Appl. Surf. Sci. 2013, 284, 624–633. [Google Scholar] [CrossRef]
- Wang, Y.; Du, X.; Wang, J.; Su, M.; Wan, X.; Meng, H.; Xie, W.; Xu, J.; Liu, P. Growth of large-scale, large-size, few-layered alpha-MoO3 on SiO2 and its photoresponse mechanism. ACS Appl. Mater. Interfaces 2017, 9, 5543–5549. [Google Scholar] [CrossRef] [PubMed]
- Alsaif, M.M.Y.A.; Chrimes, A.F.; Daeneke, T.; Balendhran, S.; Bellisario, D.O.; Son, Y.; Field, M.R.; Zhang, W.; Nili, H.; Nguyen, E.P.; et al. High-performance field effect transistors using electronic inks of 2D molybdenum oxide nanoflakes. Adv. Funct. Mater. 2016, 26, 91–100. [Google Scholar] [CrossRef]
- Balendhran, S.; Deng, J.; Ou, J.Z.; Walia, S.; Scott, J.; Tang, J.; Wang, K.L.; Field, M.R.; Russo, S.; Zhuiykov, S.; et al. Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. Adv. Mater. 2013, 25, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Vasilopoulou, M.; Douvas, A.M.; Georgiadou, D.G.; Palilis, L.C.; Kennou, S.; Sygellou, L.; Soultati, A.; Kostis, I.; Papadimitropoulos, G.; Davazoglou, D.; et al. The influence of hydrogenation and oxygen vacancies on molybdenum oxides work function and gap states for application in organic optoelectronics. J. Am. Chem. Soc. 2012, 134, 16178–16187. [Google Scholar] [CrossRef]
- Kostis, I.; Vourdas, N.; Papadimitropoulos, G.; Douvas, A.; Vasilopoulou, M.; Boukos, N.; Davazoglou, D. Effect of the oxygen sub-stoichiometry and of hydrogen insertion on the formation of intermediate bands within the gap of disordered molybdenum oxide films. J. Phys. Chem. C 2013, 117, 18013–18020. [Google Scholar] [CrossRef]
- Xu, X.; Lai, H.; Xia, Y.; Luo, T.; Chen, Y.; Wang, S.; Chen, K.; Wang, X.; Shi, T.; Xie, W.; et al. The electronic properties tuned by the synergy of polaron and d-orbital in a Co–Sn co-intercalated α-MoO3 system. J. Mater. Chem. C 2020, 8, 6536–6541. [Google Scholar] [CrossRef]
- Lai, H.; He, R.; Xu, X.; Shi, T.; Wan, X.; Meng, H.; Chen, K.; Zhou, Y.; Chen, Q.; Liu, P.; et al. A self-driven approach for local ion intercalation in vdW crystals. Nanoscale 2020, 12, 1448–1454. [Google Scholar] [CrossRef]
- Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 2006, 73, 6. [Google Scholar] [CrossRef] [Green Version]
- Coquet, R.; Willock, D.J. The (010) surface of alpha-MoO3, a DFT + U study. Phys. Chem. Chem. Phys. 2005, 7, 3819–3828. [Google Scholar] [CrossRef]
- Inzani, K.; Grande, T.; Vullum-Bruer, F.; Selbach, S.M. A van der Waals density functional study of MoO3 and its oxygen vacancies. J. Phys. Chem. C 2016, 120, 8959–8968. [Google Scholar] [CrossRef] [Green Version]
- Hanson, E.D.; Lajaunie, L.; Hao, S.; Myers, B.D.; Shi, F.; Murthy, A.A.; Wolverton, C.; Arenal, R.; Dravid, V.P. Systematic study of oxygen vacancy tunable transport properties of few-layer MoO3−x enabled by vapor-based synthesis. Adv. Funct. Mater. 2017, 27, 1605380. [Google Scholar] [CrossRef] [Green Version]
- Ritter, C.; Müller-Warmuth, W.; Schöllhorn, R. Structure and motion of hydrogen in molybdenum bronzes HxMoO3 as studied by nuclear magnetic resonance. J. Chem. Phys. 1985, 83, 6130–6138. [Google Scholar] [CrossRef]
- Hirata, T.; Ishioka, K.; Kitajima, M. Raman spectra of MoO3 implanted with protons. Appl. Phys. Lett. 1996, 68, 458–460. [Google Scholar] [CrossRef]
- Yaacob, M.; Yu, J.; Latham, K.; Kalantar-Zadeh, K.; Wlodarski, W. Optical hydrogen sensing properties of nanostructured Pd/MoO3 films. Sens. Lett. 2011, 9, 16–20. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Xu, X.; Huang, J.; Zhang, Z.; Gao, Y.; Lu, Z.; Wu, Z.; Luo, T.; Cai, Y.; Qu, Y.; et al. Optoelectronic Properties of α-MoO3 Tuned by H Dopant in Different Concentration. Materials 2022, 15, 3378. https://doi.org/10.3390/ma15093378
Huang X, Xu X, Huang J, Zhang Z, Gao Y, Lu Z, Wu Z, Luo T, Cai Y, Qu Y, et al. Optoelectronic Properties of α-MoO3 Tuned by H Dopant in Different Concentration. Materials. 2022; 15(9):3378. https://doi.org/10.3390/ma15093378
Chicago/Turabian StyleHuang, Xi, Xin Xu, Jiawei Huang, Zheyu Zhang, Yujia Gao, Zhengli Lu, Zhenyuan Wu, Tian Luo, Yating Cai, Yating Qu, and et al. 2022. "Optoelectronic Properties of α-MoO3 Tuned by H Dopant in Different Concentration" Materials 15, no. 9: 3378. https://doi.org/10.3390/ma15093378
APA StyleHuang, X., Xu, X., Huang, J., Zhang, Z., Gao, Y., Lu, Z., Wu, Z., Luo, T., Cai, Y., Qu, Y., Liu, P., Hu, C., Shi, T., & Xie, W. (2022). Optoelectronic Properties of α-MoO3 Tuned by H Dopant in Different Concentration. Materials, 15(9), 3378. https://doi.org/10.3390/ma15093378