Environmental and Production Aspects of Using Fertilizers Based on Waste Elemental Sulfur and Organic Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Properties of the Soil Material
2.2. Model Incubation Experiment
- 1.
- Control soil (without additions)—C;
- 2.
- Soil with the addition of sulfur pulp (sulfur dose: I)—SI;
- 3.
- Soil with the addition of sulfur pulp (sulfur dose: I) and manure—SI + M;
- 4.
- Soil with the addition of sulfur pulp (sulfur dose: I) and digestate—SI + D;
- 5.
- Soil with the addition of sulfur pulp (sulfur dose: I) and biochar—SI + B;
- 6.
- Soil with the addition of sulfur pulp (sulfur dose: II)—SII;
- 7.
- Soil with the addition of sulfur pulp (sulfur dose: II) and manure—SII + M;
- 8.
- Soil with the addition of sulfur pulp (sulfur dose: II) and digestate—SII + D;
- 9.
- Soil with the addition of sulfur pulp (sulfur dose: II) and biochar—SII + B.
2.3. Methods of Laboratory Analyses
2.4. Statistical Analysis
3. Results and Discussion
3.1. Value of Soil pHKCl
3.2. Sulfate Sulfur Content
3.3. Total Organic Carbon Content
3.4. Dehydrogenase Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charlson, R.J.; Anderson, T.L.; McDuff, R.E. The sulfur cycle. In Global Biogeochemical Cycles; Butcher, S.S., Charlson, R.J., Orians, G.H., Wolfe, G.V., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 285–300. [Google Scholar]
- Dubuis, P.H.; Marazzi, C.; Städler, E.; Mauch, F. Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased disease susceptibility of oilseed rape. J. Phytopathol. 2005, 153, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Meyer, A.J.; Hell, R. Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth. Res. 2005, 86, 435–457. [Google Scholar] [CrossRef] [PubMed]
- Kertesz, M.A.; Fellows, E.; Schmalenberger, A. Rhizobacteria and plant sulfur supply. Adv. Appl. Microbiol. 2007, 62, 235–268. [Google Scholar] [CrossRef] [PubMed]
- Mukwevho, E.; Ferreira, Z.; Ayeleso, A. Potential role of sulfur-containing antioxidant systems in highly oxidative environments. Molecules 2014, 19, 19376–19389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baikhamurova, M.O.; Sainova, G.A.; Akbasova, A.D.; Anarbekova, G.D.; Ozler, M.A. The influence of the mixture of ver-micompost and sulphur-perlite-containing waste on the yield and the quality of crops. J. Water Land Dev. 2021, 49, 213–218. [Google Scholar] [CrossRef]
- Chowaniak, M.; Niemiec, M.; Zhu, Z.; Rashidov, N.; Gródek-Szostak, Z.; Szeląg-Sikora, A.; Sikora, J.; Kuboń, M.; Fayzullo, S.A.; Mahmadyorzoda, U.M.; et al. Quality Assessment of Wild and Cultivated Green Tea from Different Regions of China. Molecules 2021, 26, 3620. [Google Scholar] [CrossRef]
- Rashidov, N.; Chowaniak, M.; Niemiec, M.; Mamurovich, G.S.; Gufronovich, M.J.; Gródek-Szostak, Z.; Szeląg-Sikora, A.; Sikora, J.; Kuboń, M.; Komorowska, M. Assessment of the Multiannual Impact of the Grape Training System on GHG Emissions in North Tajikistan. Energies 2021, 14, 6160. [Google Scholar] [CrossRef]
- Szeląg-Sikora, A.; Sikora, J.; Niemiec, M.; Gródek-Szostak, Z.; Kapusta-Duch, J.; Kuboń, M.; Komorowska, M.; Karcz, J. Impact of Integrated and Conventional Plant Production on Selected Soil Parameters in Carrot Production. Sustainability 2019, 11, 5612. [Google Scholar] [CrossRef] [Green Version]
- Niemiec, M.; Sikora, J.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Komorowska, M. Assessment of the Possibilities for the Use of Selected Waste in Terms of Biogas Yield and Further Use of Its Digestate in Agriculture. Materials 2022, 15, 988. [Google Scholar] [CrossRef]
- Campbell, G.W.; Smith, R.I. Spatial and temporal trends in atmospheric sulphur deposition to agricultural surfaces in the United Kingdom. Proc. Fertil. Soc. 1996, 24, 378. [Google Scholar]
- Prasad, R. Major sulphur compounds in plants and their role in human nutrition and health—An overview. Proc. Indian Natn. Sci. Acad. 2014, 80, 1045–1054. [Google Scholar] [CrossRef]
- Engardt, M.; Simpson, D.; Schwikowski, M.; Granat, L. Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations. Tellus B Chem. Phys. Meteorol. 2017, 69, 1328945. [Google Scholar] [CrossRef] [Green Version]
- Cherr, C.M.; Scholberg, J.M.S.; McSorley, R. Green manure approaches to crop production: A synthesis. Agron. J. 2006, 98, 302–319. [Google Scholar] [CrossRef] [Green Version]
- Cardelli, R.; Saviozzi, A.; Cipolli, S.; Riffaldi, R. Compost and cattle manure as sources of inorganic sulphur to soil. Arch. Agron. Soil Sci. 2008, 54, 139–147. [Google Scholar] [CrossRef]
- Kumar, V.; Chopra, A.K.; Kumar, A. A review on sewage sludge (biosolids) a resource for sustainable agriculture. Arch. Agric. Environ. Sci. 2017, 2, 340–347. [Google Scholar] [CrossRef]
- Szymańska, M.; Sosulski, T.; Szara, E.; Wąs, A.; Sulewski, P.; van Pruissen, G.W.P.; Cornelissen, R.L. Ammonium sulphate from a bio-refinery system as a fertilizer-agronomic and economic effectiveness on the farm scale. Energies 2019, 12, 4721. [Google Scholar] [CrossRef] [Green Version]
- Degaltseva, Z.V.; Govdya, V.V.; Velichko, K.A. Management of expenses for fertilizers and chemical plant protection products in the accounting and control system of agrarian formations. J. Water Land Dev. 2021, 49, 229–234. [Google Scholar] [CrossRef]
- Lisowska, A.; Tabak, M.; Filipek-Mazur, B. Possibility of using waste sulfur pulp for fertilizer production. Przemysł Chem. 2021, 100/11, 1084–1088. [Google Scholar] [CrossRef]
- Rusco, E.; Jones, R.J.A.; Bidoglio, G. EUR 20556 EN; JCR, Office for official publications of the European communities: Luxembourg, 2001. [Google Scholar]
- Jones, A.; Panagos, P.; Barcelo, S.; Bouraoui, F.; Bosco, C.; Dewitte, O.; Gardi, C.; Erhard, M.; Hervas, D.F.; Hiederer, R.; et al. The State of Soil in Europe: A Contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report—SOER 2010; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- Niemiec, M.; Komorowska, M.; Szeląg-Sikora, A.; Sikora, J.; Kuboń, M.; Gródek-Szostak, Z.; Kapusta-Duch, J. Risk Assessment for Social Practices in Small Vegetable farms in Poland as a Tool for the Optimization of Quality Management Systems. Sustainability 2019, 11, 3913. [Google Scholar] [CrossRef] [Green Version]
- Gródek-Szostak, Z.; Luc, M.; Szeląg-Sikora, A.; Sikora, J.; Niemiec, M.; Ochoa Siguencia, L.; Velinov, E. Promotion of RES in a Technology Transfer Network. Case Study of the Enterprise Europe Network. Energies 2020, 13, 3445. [Google Scholar] [CrossRef]
- Gródek-Szostak, Z.; Suder, M.; Kusa, R.; Szeląg-Sikora, A.; Duda, J.; Niemiec, M. Renewable Energy Promotion Instruments Used by Innovation Brokers in a Technology Transfer Network. Case Study of the Enterprise Europe Network. Energies 2020, 13, 5752. [Google Scholar] [CrossRef]
- Volodchenko, A.A.; Lesovik, V.S.; Cherepanova, I.A.; Volodchenko, A.N.; Zagorodnjuk, L.H.; Elistratkin, M.Y. Peculiarities of non-autoclaved lime wall materials production using clays. IOP Conf. Ser. Mater. Sci. Eng. 2018, 327, 022021. [Google Scholar] [CrossRef]
- Amran, M.; Fediuk, R.; Murali, G.; Avudaiappan, S.; Ozbakkaloglu, T.; Vatin, N.; Karelina, M.; Klyuev, S.; Gholampour, A. Fly Ash-Based Eco-Efficient Concretes: A Comprehensive Review of the Short-Term Properties. Materials 2021, 14, 4264. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xu, K.; Ali, A.; Deng, H.; Cai, H.; Wang, Q.; Pan, J.; Chang, C.-C.; Liu, H.; Zhang, Z. Sulfur-aided composting facilitates ammonia release mitigation, endocrine disrupting chemicals degradation and biosolids stabilization. Bioresour. Technol. 2020, 312, 123653. [Google Scholar] [CrossRef]
- Thalmann, A. Methods of dehydrogenase activity determination with triphenyltetrazoliumchlorid (TTC). Landwirtsch. Forsch. 1968, 21, 249–258. [Google Scholar]
- Warzyński, H.; Sosnowska, A.; Harasimiuk, A. Effect of variable content of organic matter and carbonates on results of determination of granulometric composition by means of Casagrande’s areometric method in modification by Prószyński. Soil Sci. Annu. 2018, 69, 39–48. [Google Scholar] [CrossRef]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Wu, W.; Liu, H. Factors affecting variations of soil pH in different horizons in hilly regions. PLoS ONE 2019, 14, e0218563. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Karimizarchi, M.; Aminuddin, H.; Khanif, M.Y.; Radziah, O. Elemental sulphur application effects on nutrient availability and sweet maize (Zea mays L.) response in a high pH soil of Malaysia. Malays. J. Soil Sci. 2014, 18, 75–86. [Google Scholar]
- Yang, Z.H.; Stöven, K.; Haneklaus, S.; Singh, B.R.; Schnug, E. Elemental sulfur oxidation by Thiobacillus spp. and aerobic heterotrophic sulfur-oxidizing bacteria. Pedosphere 2010, 20, 71–79. [Google Scholar] [CrossRef]
- Tabak, M.; Lisowska, A.; Filipek-Mazur, B. Bioavailability of sulfur from waste obtained during biogas desulfurization and the effect of sulfur on soil acidity and biological activity. Processes 2020, 8, 863. [Google Scholar] [CrossRef]
- Lisowska, A.; Filipek-Mazur, B.; Sołtys, J.; Niemiec, M.; Gorczyca, O.; Bar-Michalczyk, D.; Komorowska, M.; Gródek-Szostak, Z.; Szeląg-Sikora, A.; Sikora, J.; et al. Preparation, characterization of granulated sulfur fertilizers and their effects on a sandy soils. Materials 2022, 15, 612. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wan, M.; He, P.; Li, S.; Lin, B. Oxidation of elemental sulfur in paddy soils as influenced by flooded condition and plant growth in pot experiment. Biol. Fertil. Soils. 2002, 36, 384–389. [Google Scholar] [CrossRef]
- Mattiello, E.M.; da Silva, R.C.; Degryse, F.; Baird, R.; Gupta, V.V.S.R.; McLaughlin, M.J. Sulfur and zinc availability from co-granulated Zn-enriched elemental sulfur fertilizers. J. Agric. Food Chem. 2017, 65, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Haneklaus, S.; Ram Singh, B.; Schnug, E. Effect of repeated applications of elemental sulfur on microbial population, sulfate concentration, and pH in soils. Commun. Soil Sci. Plant Anal. 2007, 39, 124–140. [Google Scholar] [CrossRef]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Effect of digestate on soil organic carbon and plant-available nutrient content compared to cattle slurry and mineral fertilization. Agronomy 2020, 10, 379. [Google Scholar] [CrossRef] [Green Version]
- Tambone, F.; Adani, F. Nitrogen mineralization from digestate in comparison to sewage sludge, compost and urea in a laboratory incubated soil experiment. J. Plant Nutr. Soil Sci. 2017, 180, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Wang, B.; Xu, M.; Zhang, H.; He, X.; Zhang, L.; Gao, S. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. J. Soils Sediments 2014, 15, 260–270. [Google Scholar] [CrossRef]
- L’Herroux, L.; Le Roux, S.; Appriou, P.; Martinez, J. Behaviour of metals following intensive pig slurry application to a natural field treatment process in Brittany (France). Environ. Pollut. 1997, 97, 119–130. [Google Scholar] [CrossRef]
- Whalen, J.K.; Chang, C.; Clayton, G.W.; Carefoot, J.P. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 2000, 64, 962–966. [Google Scholar] [CrossRef] [Green Version]
- Aziz, M.A.; Ahmad, H.R.; Corwin, D.L.; Sabir, M.; Hakeem, K.R.; Öztürk, M. Influence of farmyard manure on retention and availability of nickel, zinc and lead in metal-contaminated calcareous loam soils. J. Environ. Eng. Landsc. Manag. 2017, 25, 289–296. [Google Scholar] [CrossRef]
- Stevenson, F.J.; Cole, M.A. Cycles of Soil (Carbon, Nitrogen Phosphorus Sulfur, Micronutrients); John Wiley and Sons Publishers: Hoboken, NJ, USA, 1999; p. 427. [Google Scholar]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soil Sediment 2019, 19, 2405–2416. [Google Scholar] [CrossRef]
- Solaiman, Z.M.; Anawar, H.M. Application of biochars for soil constraints: Challenges and solutions. Pedosphere 2015, 25, 631–638. [Google Scholar] [CrossRef]
- Degryse, F.; Ajiboye, B.; Baird, R.; da Silva, R.C.; McLaughlin, M.J. Oxidation of elemental sulfur in granular fertilizers depends on the soil-exposed surface area. Soil Sci. Soc. Am. J. 2016, 80, 294–305. [Google Scholar] [CrossRef]
- Degryse, F.; da Silva, R.C.; Baird, R.; Beyrer, T.; Below, F.; McLaughlin, M.J. Uptake of elemental or sulfate-S from fall- or spring-applied co-granulated fertilizer by corn—A stable isotope and modeling study. Field Crops Res. 2018, 221, 322–332. [Google Scholar] [CrossRef]
- Wen, G.; Schoenau, J.J.; Yamamoto, T.; Inoue, M. A model of oxidation of an elemental sulfur fertilizer in soil. Soil Sci. 2001, 166, 607–613. [Google Scholar] [CrossRef]
- Lucheta, A.R.; Lambais, M.R. Sulfur in agriculture. Rev. Bras. Ciênc. Solo 2012, 36, 1369–1379. [Google Scholar] [CrossRef] [Green Version]
- Jaggi, A.C.; Aulakh, M.S.; Sharma, R. Temperature effects on soil organic sulphur mineralization and elemental sulphur oxidation in subtropical soils of varying pH. Nutr. Cycling Agroecosyst. 1999, 54, 175–182. [Google Scholar] [CrossRef]
- Cifuentes, F.R.; Lindemann, W.C. Organic matter stimulation of elemental sulfur oxidation in a calcareous soil. Soil Sci. Soc. Am. J. 1993, 57, 727–731. [Google Scholar] [CrossRef]
- Skwierawska, M.; Zawartka, L.; Zawadzki, B. The effect of different rates and forms of sulphur applied on changes of soil agrochemical properties. Plant Soil Environ. 2008, 54, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Niemiec, M.; Chowaniak, M.; Sikora, J.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Komorowska, M. Selected Properties of Soils for Long-Term Use in Organic Farming. Sustainability 2020, 12, 2509. [Google Scholar] [CrossRef] [Green Version]
- Sikora, J.; Niemiec, M.; Tabak, M.; Gródek-Szostak, Z.; Szeląg-Sikora, A.; Kuboń, M.; Komorowska, M. Assessment of the Efficiency of Nitrogen Slow-Release Fertilizers in Integrated Production of Carrot Depending on Fertilization Strategy. Sustainability 2020, 12, 1982. [Google Scholar] [CrossRef] [Green Version]
- Olowoboko, T.B.; Azeez, J.O.; Olujimi, O.O.; Babalola, O.A. Availability and dynamics of organic carbon and nitrogen indices in some soils amended with animal manures and ashes. Int. J. Recycl. Org. Waste Agric. 2018, 7, 287–304. [Google Scholar] [CrossRef] [Green Version]
- Furtak, K.; Grządziel, J.; Gałązka, A.; Niedźwiecki, J. Analysis of soil properties, bacterial community composition, and metabolic diversity in fluvisols of a floodplain area. Sustainability 2019, 11, 3929. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Wang, G.; Cheng, Y.; Shi, P.; Yang, C.; Yang, H.; Xu, Z. Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids. Sci. Rep. 2019, 9, 12499. [Google Scholar] [CrossRef] [Green Version]
- Holík, L.; Hlisnikovský, L.; Honzík, R.; Trögl, J.; Burdová, H.; Popelka, J. Soil Microbial Communities and Enzyme Activities after Long-Term Application of Inorganic and Organic Fertilizers at Different Depths of the Soil Profile. Sustainability 2019, 11, 3251. [Google Scholar] [CrossRef] [Green Version]
- Mierzwa-Hersztek, M.; Wolny-Koładka, K.; Gondek, K.; Gałązka, A.; Gawryjołek, K. Effect of coapplication of biochar and nutrients on microbiocenotic composition, dehydrogenase activity index and chemical properties of sandy soil. Waste Biomass Valor. 2020, 11, 3911–3923. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.V.S.R.; Lawrence, J.R.; Germida, J.J. Impact of elemental sulfur fertilization on agricultural soils. I. Effects on microbial biomass and enzyme activities. Can. J. Soil Sci. 1988, 68, 463–473. [Google Scholar] [CrossRef]
- Siwik-Ziomek, A.; Szczepanek, M. Soil extracellular enzyme activities and uptake of N by oilseed rape depending on fertilization and seaweed biostimulant application. Agronomy 2019, 9, 480. [Google Scholar] [CrossRef] [Green Version]
- Chang, E.H.; Chung, R.S.; Wang, F.N. Effect of different types of organic fertilizers on the chemical properties and enzymatic activities of an Oxisol under intensive cultivation of vegetables for 4 years. Soil Sci. Plant Nutr. 2008, 54, 587–599. [Google Scholar] [CrossRef] [Green Version]
- Cenini, V.; Fornara, D.; Mcmullan, G.; Ternan, N.; Carolan, R.; Crawley, M.J.; Clement, J.C.; Lavorel, S. Linkages between extracellular enzyme activities and the carbon and nitrogen content of grassland soils. Soil Biol. Biochem. 2016, 96, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Siczek, A.; Frąc, M.; Gryta, A.; Kalembasa, S.; Kalembasa, D. Variation in soil microbial population and enzyme activities under faba bean as affected by pentachlorophenol. Appl. Soil Ecol. 2020, 150, 103466. [Google Scholar] [CrossRef]
- Scherer, H.W.; Metker, D.J.; Welp, G. Effect of long-term organic amendments on chemical and microbial properties of a luvisol. Plant Soil Environ. 2011, 57, 513–518. [Google Scholar] [CrossRef] [Green Version]
- Ros, M.; Hernandez, M.T.; Garcia, C. Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biol. Biochem. 2003, 35, 463–469. [Google Scholar] [CrossRef]
- Garcia-Gil, J.C.; Plaza, C.; Soler-Rovira, A.; Polo, A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 2000, 32, 1907–1913. [Google Scholar] [CrossRef]
- Shah, T.N.; Khan, S.I.; Shah, Z. Soil respiration, pH and EC as influenced by biochar. Soil Environ. 2017, 36, 77–83. [Google Scholar] [CrossRef]
Parameter | Very Light Soil | Heavy Soil |
---|---|---|
Soil texture, % | ||
1.0–0.1 | 85 | 10 |
0.1–0.02 | 12 | 70 |
<0.02 | 3 | 20 |
Maximum water capacity, % | 20.5 | 43.9 |
pHH2O | 6.01 | 5.42 |
pHKCl | 5.04 | 4.35 |
Hydrolityc acidity, mmol (+)/kg d.m. | 14.9 | 41.6 |
Sulfate S, mg/kg d.m. | 3.57 | 10.37 |
Total N, g/kg d.m. | 0.605 | 1.59 |
Total C, g/kg d.m. | 8.23 | 19.7 |
Total S, mg/kg d.m. | 97.6 | 231 |
Total Fe, mg/kg d.m. | 2.70 × 103 | 7.56 |
Total Cd, mg/kg d.m. | 0.683 | 0.792 |
Total Cr, mg/kg d.m. | 3.86 | 16.8 |
Total Cu, mg/kg d.m. | 4.27 | 9.48 |
Total Hg, mg/kg d.m. | traces | traces |
Total Mn, mg/kg d.m. | 106 | 396 |
Total Ni, mg/kg d.m. | 3.18 | 6.74 |
Total Pb, mg/kg d.m. | 7.13 | 25.5 |
Total Zn, mg/kg d.m. | 23.9 | 67.6 |
Parameter | Sulfur Pulp | Manure | Digestate | Biochar |
---|---|---|---|---|
d.m., % | 32.3 | 93.7 | 25.1 | 98.7 |
Organic matter | - | 652 | 552 | 954 |
Total N, g/kg d.m. | 4.19 | 31.3 | 35.7 | 4.63 |
Total C, g/kg d.m. | 20.3 | 330 | 311 | 516 |
Total Na, g/kg d.m. | 12.2 | 1.98 | 0.700 | 0.125 |
Total Mg, g/kg d.m. | traces | 5.33 | 3.89 | 1.06 |
Total K, g/kg d.m. | traces | 10.4 | 2.37 | 2.40 |
Total Ca, g/kg d.m. | traces | 46.2 | 26.9 | 5.34 |
Total P, g/kg d.m. | traces | 13.9 | 19.0 | 0.834 |
Total Fe, g/kg d.m. | 2.95 | 1.68 | 9.09 | 0.999 |
Total S, g/kg d.m. | 864 | 5.19 | 9.00 | 0.199 |
Total Cd, mg/kg d.m. | traces | 0.225 | 1.46 | 0.025 |
Total Cr, mg/kg d.m. | traces | 7.34 | 51.5 | 46.9 |
Total Cu, mg/kg d.m. | traces | 57.0 | 169 | 6.83 |
Total Mn, mg/kg d.m. | traces | 377 | 337 | 363 |
Total Ni, mg/kg d.m. | traces | 4.42 | 24.6 | 26.4 |
Total Pb, mg/kg d.m. | traces | 1.05 | 22.2 | 0.816 |
Total Hg, mg/kg d.m. | not determined | traces | 0.659 | traces |
Total Zn, mg/kg d.m. | traces | 266 | 716 | 42.9 |
Treatment * | Number of Incubation Days | |||||
---|---|---|---|---|---|---|
0 | 15 | 30 | 60 | 120 | 240 | |
Very Light Soil | ||||||
C | 5.78 stuvwx ** | 5.80 tuvwxy | 5.77 stuvwx | 5.70 qrstuvw | 5.55 jklmnop | 5.41 efgh |
SI | 5.76 rstuvwx | 5.64 opqrst | 5.56 klmnopq | 5.52 ijklmno | 5.44 efghi | 5.13 b |
SII | 5.76 rstuvwx | 5.47 fghijkl | 5.45 fghij | 5.45 fghij | 5.36 de | 5.10 b |
SI + M | 6.02 xy | 5.80 tuvwxy | 5.69 pqrstuv | 5.57 lmnopq | 5.53 ijklmno | 5.26 c |
SI + D | 5.91 vwxy | 5.61 nopqrs | 5.56 lmnopq | 5.48 fghijklm | 5.45 fghijk | 5.11 b |
SI + B | 5.85 uvwxy | 5.77 stuvwx | 5.68 pqrstu | 5.52 ijklmno | 5.51 ijklmno | 5.31 cd |
SII + M | 6.09 y | 5.79 tuvwx | 5.69 pqrstuvw | 5.60 mnopqr | 5.49 ghijklmn | 5.28 c |
SII + D | 5.92 wxy | 5.56 klmnopq | 5.44 efghi | 5.39 ef | 5.27 c | 5.02 a |
SII + B | 5.81 tuvwxy | 5.55 jklmnopq | 5.50 hijklmn | 5.40 efg | 5.31 cd | 5.05 a |
Heavy Soil | ||||||
C | 4.95 nopqrs ** | 5.00 pqrst | 4.88 klmnop | 4.82 jklm | 4.73 fghi | 4.50 b |
SI | 5.02 qrst | 4.94 nopqrs | 4.85 klmn | 4.74 ghij | 4.70 efg | 4.45 a |
SII | 4.95 nopqrs | 4.96 nopqrs | 4.81 ijklm | 4.70 efg | 4.63 d | 4.42 a |
SI + M | 5.12 t | 5.07 rst | 4.94 nopqrs | 4.89 lmnop | 4.80 ijkl | 4.56 c |
SI + D | 5.08 rst | 4.97 opqrst | 4.85 klmn | 4.79 hijk | 4.71 efg | 4.51 b |
SI + B | 5.04 qrst | 4.93 nopqr | 4.87 klmno | 4.75 ghij | 4.71 efgh | 4.43 a |
SII + M | 5.08 st | 4.99 opqrst | 4.85 klmn | 4.80 ijkl | 4.73 ghi | 4.50 b |
SII + D | 5.03 qrst | 4.90 mnopq | 4.85 klmn | 4.72 fgh | 4.65 de | 4.44 a |
SII + B | 4.98 opqrst | 4.94 nopqrs | 4.82 jklm | 4.71 efgh | 4.66 def | 4.43 a |
Treatment * | Number of Incubation Days | |||||
---|---|---|---|---|---|---|
0 | 15 | 30 | 60 | 120 | 240 | |
Very Light Soil | ||||||
C | 2.25 a ** ± 0.41 | 1.58 a ± 0.23 | 2.18 a ± 0.19 | 4.28 abc ± 0.93 | 2.81 abc ± 0.11 | 2.40 ab ± 0.36 |
SI | 2.29 ab ± 0.36 | 5.82 abcde ± 0.70 | 11.76 ghij ± 3.36 | 14.88 hijklmnop ± 1.96 | 12.10 ghijk ± 1.33 | 9.44 efg ± 0.49 |
SII | 2.82 abc ± 0.56 | 13.98 hijklmn ± 1.4 | 18.29 nopq ± 0.99 | 19.36 pq ± 6.11 | 21.31 qr ± 3.40 | 13.55 ghijklm ± 0.21 |
SI + M | 4.32 abc ± 1.06 | 6.83 bcdef ± 0.05 | 15.80 ijklmno ± 1.95 | 18.15 nopq ± 1.74 | 14.63 hijklmno ± 1.75 | 12.04 ghijk ± 2.09 |
SI + D | 5.47 abcde ± 0.17 | 9.19 defg ± 1.19 | 11.25 ghi ± 0.30 | 15.45 ijklmno ± 1.97 | 15.25 ijklmno ± 2.64 | 13.40 ghijklm ± 0.96 |
SI + B | 3.09 abc ± 0.22 | 7.03 cdef ± 2.30 | 12.40 ghijkl ± 0.67 | 16.14 jklmno ± 3.33 | 16.40 klmnop ± 1.91 | 10.62 fgh ± 0.98 |
SII + M | 5.02 abcd ± 0.10 | 15.93 jklmno ± 3.40 | 25.20 rs ± 4.44 | 39.04 t ± 3.52 | 17.00 lmnopq ± 1.15 | 18.62 opq ± 1.84 |
SII + D | 4.86 abcd ± 0.77 | 25.03 rs ± 3.33 | 27.37 s ± 4.34 | 35.48 t ± 6.50 | 23.80 rs ± 2.31 | 23.51 rs ± 3.79 |
SII + B | 3.65 abc ± 0.41 | 15.36 ijklmno ± 2.85 | 13.21 ghijklm ± 2.21 | 17.38 mnopq ± 3.86 | 17.40 mnopq ± 1.83 | 19.41 pq ± 0.42 |
Heavy Soil | ||||||
C | 6.36 ab ** ± 0.08 | 6.64 ab ± 0.94 | 8.97 bcd ± 0.47 | 9.69 cde ± 0.30 | 5.26 a ± 0.78 | 6.79 ab ± 0.88 |
SI | 6.44 ab ± 0.09 | 9.83 cdef ± 0.97 | 20.73 mn ± 0.88 | 29.64 rstu ± 2.99 | 16.42 jk ± 1.05 | 15.54 ij ± 1.84 |
SII | 8.46 bc ± 0.43 | 13.46 ghi ± 1.03 | 39.32 vw ± 1.16 | 50.61 y ± 1.95 | 29.09 rst ± 0.42 | 25.81 pq ± 0.95 |
SI + M | 8.67 bc ± 0.66 | 12.13 efg ± 0.60 | 28.9 rs ± 2.28 | 38.03 v ± 2.43 | 19.98 lmn ± 1.99 | 15.19 hij ± 0.84 |
SI + D | 8.94 bcd ± 0.49 | 11.59 defg ± 0.82 | 24.18 op ± 1.43 | 28.21 qrs ± 0.56 | 17.68 jkl ± 0.61 | 15.16 hij ± 0.31 |
SI + B | 6.86 abc ± 0.16 | 8.96 bcd ± 0.36 | 23.56 op ± 2.20 | 28.31 qrs ± 2.12 | 17.10 jk ± 2.28 | 16.78 jk ± 0.69 |
SII + M | 8.43 bc ± 0.32 | 12.64 gh ± 0.61 | 41.16 w ± 2.81 | 50.83 y ± 3.15 | 30.14 stu ± 2.25 | 26.99 qr ± 1.11 |
SII + D | 7.16 abc ± 0.33 | 18.73 klm ± 0.99 | 43.89 x ± 2.56 | 53.55 z ± 2.04 | 32.36 u ± 0.80 | 29.46 rst ± 1.02 |
SII + B | 7.57 abc ± 0.38 | 12.54 fgh ± 0.72 | 38.07 ± 3.78 | 49.65 y ± 3.07 | 31.88 tu ± 2.17 | 21.96 no ± 1.82 |
Treatment * | Very Light Soil | Heavy Soil |
---|---|---|
C | 4.70 abc ** ± 0.35 | 10.91 ab ± 0.48 |
SI | 4.42 ab ± 0.29 | 10.60 a ± 0.25 |
SII | 4.37 ab ± 0.37 | 11.22 abc ± 0.35 |
SI + M | 4.62 abc ± 0.32 | 11.87 c ± 0.65 |
SI + D | 4.24 a ± 0.16 | 11.61 bc ± 0.65 |
SI + B | 4.27 a ± 0.23 | 11.80 c ± 0.22 |
SII + M | 5.11 c ± 0.35 | 11.44 bc ± 0.44 |
SII + D | 4.91 bc ± 0.38 | 11.61 bc ± 0.29 |
SII + B | 4.66 abc ± 0.30 | 11.83 c ± 0.12 |
Treatment * | Number of Incubation Days | ||||
---|---|---|---|---|---|
0 | 15 | 30 | 60 | 120 | |
Very Light Soil | |||||
C | 0.95 ghijk ** ± 0.07 | 0.96 ghijk ± 0.13 | 0.92 ghij ± 0.03 | 0.78 defgh ± 0.06 | 0.72 cdefg ± 0.05 |
SI | 0.82 defgh ± 0.10 | 0.82 defgh ± 0.01 | 0.92 ghij ± 0.05 | 0.93 ghij ± 0.14 | 0.67 bcdef ± 0.01 |
SII | 0.86 fghi ± 0.04 | 0.91 ghij ± 0.02 | 0.74 cdefg ± 0.12 | 0.65 bcdef ± 0.04 | 0.52 abc ± 0.02 |
SI + M | 1.33 mn ± 0.24 | 1.12 jklm ± 0.12 | 1.01 hijkl ± 0.16 | 0.94 ghij ± 0.09 | 0.84 efghi ± 0.05 |
SI + D | 1.65 o ± 0.39 | 1.42 n ± 0.15 | 1.17 klm ± 0.28 | 0.85 efghi ± 0.07 | 0.67 bcdef ± 0.06 |
SI + B | 0.82 defgh ± 0.04 | 0.83 defghi ± 0.07 | 0.73 cdefg ± 0.09 | 0.62 bcde ± 0.04 | 0.51 abc ± 0.04 |
SII + M | 1.52 no ± 0.23 | 1.21 lm ± 0.14 | 1.21 lm ± 0.15 | 0.65 bcdef ± 0.01 | 0.60 bcd ± 0.04 |
SII + D | 1.10 jkl ± 0.13 | 1.06 ijkl ± 0.15 | 1.01 hijkl ± 0.07 | 0.62 bcde ± 0.09 | 0.45 ab ± 0.06 |
SII + B | 0.82 defgh ± 0.06 | 0.83 defghi ± 0.04 | 0.66 bcdef ± 0.05 | 0.63 bcdef ± 0.02 | 0.39 a ± 0.02 |
Heavy Soil | |||||
C | 14.70 mnopq** ± 0.85 | 15.70 nopqr ± 2.15 | 17.00 pqrst ± 0.20 | 10.01 fghi ± 1.38 | 9.49 efgh ± 2.47 |
SI | 13.92 klmnop ± 1.50 | 16.50 pqrs ± 2.48 | 13.19 jklmno ± 1.06 | 13.00 ijklmno ± 1.91 | 5.53 bcd ± 0.41 |
SII | 14.73 mnopq ± 2.29 | 15.30 nopq ± 2.31 | 10.47 ghij ± 1.07 | 8.22 defg ± 1.10 | 5.27 bcd ± 0.64 |
SI + M | 14.46 lmnopq ± 0.30 | 19.59 tu ± 0.20 | 20.81 u ± 2.86 | 11.80 hijklm ± 0.74 | 5.00 abc ± 0.48 |
SI + D | 16.10 opqr ± 2.27 | 21.10 u ± 1.20 | 31.97 v ± 4.56 | 9.50 efgh ± 0.47 | 8.14 defg ± 0.49 |
SI + B | 15.92 nopqr ± 0.54 | 17.09 qrst ± 0.82 | 11.05 ghijk ± 1.02 | 11.83 hijklm ± 0.32 | 6.67 cde ± 0.42 |
SII + M | 17.16 qrst ± 0.87 | 21.19 u ± 2.49 | 18.37 rstu ± 2.93 | 13.21 jklmno ± 2.02 | 5.92 bcd ± 0.89 |
SII + D | 19.62 tu ± 1.50 | 19.30 stu ± 1.89 | 15.07 nopq ± 0.71 | 9.12 efgh ± 2.15 | 3.43 ab ± 0.08 |
SII + B | 13.00 ijklmno ± 1.99 | 12.79 ijklmn ± 0.03 | 11.50 hijkl ± 0.98 | 7.07 cdef ± 0.43 | 2.33 a ± 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisowska, A.; Filipek-Mazur, B.; Komorowska, M.; Niemiec, M.; Bar-Michalczyk, D.; Kuboń, M.; Tabor, S.; Gródek-Szostak, Z.; Szeląg-Sikora, A.; Sikora, J.; et al. Environmental and Production Aspects of Using Fertilizers Based on Waste Elemental Sulfur and Organic Materials. Materials 2022, 15, 3387. https://doi.org/10.3390/ma15093387
Lisowska A, Filipek-Mazur B, Komorowska M, Niemiec M, Bar-Michalczyk D, Kuboń M, Tabor S, Gródek-Szostak Z, Szeląg-Sikora A, Sikora J, et al. Environmental and Production Aspects of Using Fertilizers Based on Waste Elemental Sulfur and Organic Materials. Materials. 2022; 15(9):3387. https://doi.org/10.3390/ma15093387
Chicago/Turabian StyleLisowska, Aneta, Barbara Filipek-Mazur, Monika Komorowska, Marcin Niemiec, Dominika Bar-Michalczyk, Maciej Kuboń, Sylwester Tabor, Zofia Gródek-Szostak, Anna Szeląg-Sikora, Jakub Sikora, and et al. 2022. "Environmental and Production Aspects of Using Fertilizers Based on Waste Elemental Sulfur and Organic Materials" Materials 15, no. 9: 3387. https://doi.org/10.3390/ma15093387
APA StyleLisowska, A., Filipek-Mazur, B., Komorowska, M., Niemiec, M., Bar-Michalczyk, D., Kuboń, M., Tabor, S., Gródek-Szostak, Z., Szeląg-Sikora, A., Sikora, J., Kocira, S., & Wasąg, Z. (2022). Environmental and Production Aspects of Using Fertilizers Based on Waste Elemental Sulfur and Organic Materials. Materials, 15(9), 3387. https://doi.org/10.3390/ma15093387