Comparison of Melting Processes for WPC and the Resulting Differences in Thermal Damage, Emissions and Mechanics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Production of the Wood-Fiber–Polypropylene Compound
2.2.2. Tests of Component Properties
3. Results and Discussion
3.1. Fiber Length
3.2. Oxidation Induction Time
3.3. Volatile Organic Compounds
3.4. Tensile Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kopp, G.; Burkhardt, N.; Majic, N. Leichtbaustrategien und Bauweisen. In Handbuch Leichtbau-Methoden, Werkstoffe, Fertigung; Henning, F., Moeller, E., Eds.; Carl Hanser Verlag: München, Germany, 2011; Volume 3, pp. 66–68. [Google Scholar]
- Huda, M.S.; Drzal, L.; Ray, D.; Mohanty, A.; Mishra, M. Natural-fiber composites in the automotive sector. In Properties and Performance of Natural-Fibre Composites; Woodhead Publishing: Shaston, UK, 2008; pp. 221–222. [Google Scholar] [CrossRef]
- Brizga, J.; Hubacek, K.; Kuishuang, F. The Unintended Side Effects of Bioplastics: Carbon, Land, and Water Footprints. One Earth 2020, 3, 45–51. [Google Scholar] [CrossRef]
- Carus, M.; Partanaen, A. Biocomposites, find the real alternative to plastic—An examination of biocomposites in the market. Reinf. Plast. 2019, 63, 317–321. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Faruk, O.; Sperber, V.E. Cars from Bio-Fibres. Macromol. Mater. Eng. 2006, 291, 449–457. [Google Scholar] [CrossRef]
- Wolodko, J.; Alemaskin, K.; Perras, T. An Evaluation of Pulped Natural Fibres in Thermoplastic. Composites. In Proceedings of the CANCOM2015, Canadian International Conference, Edmonton, AB, Canada, 17–20 August 2015. [Google Scholar]
- Sandermann, W.; Augustin, H. Chemische Untersuchungen über die thermische Zersetzung von Holz-Zweite Mitteilung: Untersuchungen mit Hilfe der Differential-Thermo-Analyse. Holz Als Roh. Werkst. 1963, 21, 305–315. [Google Scholar] [CrossRef]
- Kollmann, F.; Fengel, D. Änderungen der chemischen Zusammensetzung von Holz durch thermische Behandlung. Holz Als Roh. Werkst. 1965, 23, 305–315. [Google Scholar] [CrossRef]
- Thomason, L.; Rudeiros-Fernandes, J.L. Thermal degradation behaviour of natural fibres at thermoplastic composite processing temperatures. Polym. Degrad. Stab. 2021, 188, 109594. [Google Scholar] [CrossRef]
- Asim, M.; Paridah, M.T.; Chandrasekar, M.; Shahroze, R.M.; Jawaid, M.; Nasir, M.; Siakeng, R. Thermal stability of natural fibers and their polymer composites. Iran. Polym. J. 2020, 29, 625–648. [Google Scholar] [CrossRef]
- Endres, H.; Shamsuyewa, M.; Vellguth, N. Bioökonomie International 2016: DeFiCoat-Entwicklung Speziell Beschichteter Naturfasern zur Herstellung von Neuartigen Bioverbundwerkstoffen aus Technischen Thermoplasten: Veröffentlichung der Ergebnisse von Forschungsvorhaben im BMBF-Programm: Projektlaufzeit: 01 November 2017–31 December 2019; Fraunhofer Institut für Holzforschung: Braunschweig, Germany, 2020. [Google Scholar]
- Sivonen, H.; Maunu, S.L.; Sundholm, F.; Jämsä, S.; Viitaniemi, P. Magnetic resonance studies of thermally modified wood. Holzforschung 2002, 56, 648–654. [Google Scholar] [CrossRef]
- Jeske, H.; Schirp, A.; Cornelius, F. Development of a thermogravimetric analysis (TGA) method for quantitative analysis of wood flour and polypropylene in wood plastic composites (WPC). Thermochim. Acta 2012, 543, 165–171. [Google Scholar] [CrossRef]
- Stamm, A.J. Thermal degradation of wood and cellulose. Ind. Eng. Chem. 1956, 38, 630–634. [Google Scholar] [CrossRef]
- Rusche, H. Die thermische Zersetzung von Holz bei Temperaturen bis 200 °C. 2.Mitt.: Reaktionskinetik des Massenverlustes bei Wärmebehandlung von Holz. Holz Roh-Werkst. 1973, 31, 307–312. [Google Scholar] [CrossRef]
- Hillis, W.E. High temperature and chemical effects on wood stability. Part 1 General considerations. Wood Sci. Technol. 1984, 18, 218–293. [Google Scholar] [CrossRef]
- Hillis, W.E.; Rozsa, A.N. High temperature and chemical effects on wood stability. Part 2. The effect of heat on the softening of radiate pine. Wood Sci. Technol. 1985, 19, 57–66. [Google Scholar] [CrossRef]
- Hillis, W.E.; Rozsa, A.N. High temperature and chemical effects on wood stability. Part 3. The effect of heat on rigidity and stability of radiate pine. Wood Sci. Technol. 1985, 19, 93–102. [Google Scholar] [CrossRef]
- Popper, R.; Eberle, G. Untersuchungen Thermomechanischer Eigenschaften des trockenen Holzes. Drevarsky vyskum. Wood Res. 1993, 135, 11–17. [Google Scholar]
- Burgstaller, C. Processing of Thermal Sensitive Materials—A Case Study for Wood Plastic Composites. Mon. Chem. 2007, 138, 343–346. [Google Scholar] [CrossRef]
- Gonzales, C. Thermal Degradation of Wood Fillers at the Melt-Processing Temperatures of Wood-Plastic Composites: Effects on Wood Mechanical Properties and Production of Volatiles. Intern. J. Polymeric Mater. 1993, 23, 67–68. [Google Scholar] [CrossRef]
- Nourbakhsh, A.; Ashori, A. Fundamental Studies on Wood-Plastic-Composites: Effects of Fiber Concentration and Mixing Temperature on the Mechanical Properties of Polar/PP Composite. Polym. Compos. 2008, 29, 569–573. [Google Scholar] [CrossRef]
- Teuber, L.; Militz, H.; Krause, A. Processing of wood plastic composites: The influence of feeding method and polymer melt flow rate on particle degradation. J. Appl. Polym. Sci. 2016, 133, 1–9. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Faruk, O. Influence of Processing Temperature on Microcellular Injection-Moulded Wood–Polypropylene Composites. Macromol. Mater. Eng. 2006, 291, 1226–1232. [Google Scholar] [CrossRef]
- Yam, K.L.; Gogoi, B.K.; Lai, C.C.; Selke, S.E. Composites from compounding wood fibers with recycled high density polyethylene. Polym. Eng. Sci. 1990, 30, 693–699. [Google Scholar] [CrossRef]
- Peltola, H.; Laatikainen, E.; Jetsu, P. Effects of physical treatment of wood fibres on fibre morphology and biocomposite properties. Plast. Rubber Compos. 2011, 40, 86–92. [Google Scholar] [CrossRef]
- Carus, M.; Partanen, A. Bioverbundwerkstoffe–Naturfaserverstärkte Kunststoffe (NFK) und Holz-Polymer-Werkstoffe (WPC); Fachagentur Nachwachsende Rohstoffe e.V. (FNR): Guelzow, Germany, 2019; pp. 8–18. [Google Scholar]
- Nygård, P.; Tanem, B.S.; Karlsen, T.; Brachet, P.; Leinsvang, B. Extrusion-based wood fibre–PP composites: Wood powder and pelletized wood fibres—A comparative study. Compos. Sci. Technol. 2008, 68, 3418–3424. [Google Scholar] [CrossRef]
- Mertens, O.; Gurr, J.; Krause, A. The utilization of thermomechanical pulp fibers in WPC: A review. J. Appl. Polym. Sci. 2017, 134, 45161. [Google Scholar] [CrossRef] [Green Version]
- Thomason, J.L.; Vlug, M.A. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: Part 1. Tensile and flexural modulus. Compos. Part A Appl. Sci. Manuf. 1996, 27, 477–484. [Google Scholar] [CrossRef]
- Thomason, J.L.; Vlug, M.A.; Schipper, G.; Krikor, H.G.L.T. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: Part 3. Strength and strain at failure. Compos. Part A Appl. Sci. Manuf. 1996, 27, 1075–1084. [Google Scholar] [CrossRef]
- Thomason, J.L.; Vlug, M.A. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene, 4. Impact properties. Compos. Part A Appl. Sci. Manuf. 1997, 28, 277–288. [Google Scholar] [CrossRef]
- Reussmann, T. Entwicklung eines Verfahrens zur Herstellung von Langfasergranulat mit Naturfaserverstärkung. Ph.D. Thesis, Technische Universität Chemnitz, Chemnitz, Germany, 2003. [Google Scholar]
- Migneault, S.; Koubaa, A.; Erchiqui, F.; Chaala, A.; Wolcott, M. Effects of processing method and fiber size on the structure and properties of wood–plastic composites. Compos. Part A 2009, 40, 80–85. [Google Scholar] [CrossRef]
- Sanschagrin, B.; Sean, S.T.; Kokta, B.V. Mechanical properties of cellulose fibers reinforced thermoplastics. J. Thermoplast. Compos. Mater. 1988, 1, 184–195. [Google Scholar] [CrossRef]
- Wolcott, M.P.; Englund, K. A technology review of wood–plastic composites. In Proceedings of the 33rd International Particleboard and Composite Materials Symposium, Pullman, WA, USA, 13–15 April 1999; p. 8. [Google Scholar]
- Gamstedt, E.K.; Nygård, P.; Lindström, M. Transfer of knowledge from papermaking to manufacture of composite materials. In Proceedings of the 3rd Wood Fibre Polymer Composites International Symposium, Bordeaux, France, 26–27 March 2007; p. 12. [Google Scholar]
- Fraunhofer-Institut für Werkstofftmechanik IWM. FENAFA-Netzwerkverbund—Teilvorhaben 5: Entwicklung von Dosiersystemen und Compounderkonfigurationen für Optimierte Compoundierprozesse mit Ganzpflanzenbasierten Naturfasern. FENAFA-Netzwerkverbund; Schlussbericht zum Vorhaben: Projektlaufzeit: 1 June 2009–31 May 2014. Available online: https://www.tib.eu/en/search/id/TIBKAT:829174109/FENAFA-Netzwerkverbund-Teilvorhaben-5-Entwicklung?cHash=1bcdbb995698fac4fcfbb5d637330741 (accessed on 21 February 2022).
- Stadlbauer, W. Wood Plastic Composites—Neues Eigenschaftsprofil durch Refinerfasern; Schriftenreihe 63; BMVIT: Vienna, Austria, 2010. [Google Scholar]
- Shahi, P.; Behravesh, A.H.; Daryabari, S.Y.; Lotfi, M. Experimental investigation on reprocessing of extruded wood flour/HDPE composites. Polym. Compos. 2012, 33, 753–763. [Google Scholar] [CrossRef]
- Mazzanti, V.; Mollica, F. A Review of Wood Polymer Composites Rheology and Its Implications for Processing. Polymers 2020, 12, 2304. [Google Scholar] [CrossRef] [PubMed]
- Stark, N.M.; Matuana, L.M.; Clemons, C.M. Effect of processing method on surface and weathering characteristics of wood-flour/HDPE composites. J. Appl. Polym. Sci. 2004, 93, 1021–1030. [Google Scholar] [CrossRef] [Green Version]
- Clemons, C.M.; Ibach, R.E. Effects of processing method and moisture history on laboratory fungal resistance of wood-HDPE composites. For. Prod. J. 2004, 54, 50–57. [Google Scholar]
- Bledzki, A.K.; Faruk, O. Extrusion and injection moulded microcellular wood fibre reinforced polypropylene composites. Cell. Polym. 2004, 23, 211–227. [Google Scholar] [CrossRef]
- Kahr, S.C. Wood Plastic Composites: Determination and Comparison of the Specific Energy Consumption for WPC Compounding Methods Based on Two State-of-the-Art Formulations. Master’s Thesis, Montan Universität Leoben, Leoben, Austria, 2010. [Google Scholar]
- Specht, K. Holz- und hanffaserverstärktes Polypropylen in der Spritzgießverarbeitung—Faseraufschluss- und Verbundaufbereitungsverfahren, Haftvermittler, Alterungsverhalten. Ph.D. Thesis, Institut für Werkstofftechnik, Universität Kassel, Kassel, Germany, 2007. [Google Scholar]
- Obermeier, F.; Schumacher, M.; Barth, S.; Karlinger, P.; Michanickl, A.; Schemme, M.; Altstädt, A. Verstärkung von Polyp-ropylen mit Holzfasern durch Direkt-Compoundierung. Z. Kunstst. 2021, 17, 87–111. Available online: https://www.kunststoffe.de/a/fachartikel/verstaerkung-von-polypropylen-mit-holzfa-314376 (accessed on 21 February 2022). [CrossRef]
- Stammen, E.; Bunzel, F.; Dilger, K. Beständigkeit von Klebstoffen schnell einschätzen. Adhaes. Kleb. Dicht. 2016, 60, 28–33. [Google Scholar] [CrossRef]
- Borysiak, S. The thermo-oxidative stability and flammability of wood/polypropylene composites. J. Therm. Anal. Calorim. 2015, 119, 1955–1962. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Q.; Xanthos, M.; Mitra, S.; Patel, S.H.; Guo, J. Effects of melt reprocessing on volatile emissions and structural/rheological changes of unstabilized polypropylene. Polym. Degrad. Stab. 2002, 77, 93–102. [Google Scholar] [CrossRef]
- Menges, G.; Geisbüsch, P. Die Glasfaserorientierung und ihr Einfluss auf die mechanischen Eigenschaften thermoplastischer Spritzgussteile—Eine Abschätzmethode. Colloid Polym. Sci. 1982, 260, 73–81. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiedl, S.; Karlinger, P.; Schemme, M.; List, M.; Ruckdäschel, H. Comparison of Melting Processes for WPC and the Resulting Differences in Thermal Damage, Emissions and Mechanics. Materials 2022, 15, 3393. https://doi.org/10.3390/ma15093393
Wiedl S, Karlinger P, Schemme M, List M, Ruckdäschel H. Comparison of Melting Processes for WPC and the Resulting Differences in Thermal Damage, Emissions and Mechanics. Materials. 2022; 15(9):3393. https://doi.org/10.3390/ma15093393
Chicago/Turabian StyleWiedl, Sebastian, Peter Karlinger, Michael Schemme, Manuela List, and Holger Ruckdäschel. 2022. "Comparison of Melting Processes for WPC and the Resulting Differences in Thermal Damage, Emissions and Mechanics" Materials 15, no. 9: 3393. https://doi.org/10.3390/ma15093393
APA StyleWiedl, S., Karlinger, P., Schemme, M., List, M., & Ruckdäschel, H. (2022). Comparison of Melting Processes for WPC and the Resulting Differences in Thermal Damage, Emissions and Mechanics. Materials, 15(9), 3393. https://doi.org/10.3390/ma15093393