An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain
Abstract
:1. Introduction
2. Material and Strain Fatigue Experiments
3. Proposed Fatigue Crack Initiation Life Prediction Approach for UFG AA
3.1. Indicator Parameter of Inhomogeneity Considering the Influence of Normal Stress
3.2. Modeling of Small Crack Propagation Life Based on the Indicator of Microscale Multiaxial Strain
4. Simulation Methodology
4.1. Dislocation-Based Constitutive Model
4.2. Construction of the Finite Element Model
4.2.1. Applied Boundary Conditions
4.2.2. Validation of the RVE
4.3. Parameter Identification
4.3.1. Identification of Material Parameters and Simulating Cyclic Deformation Behavior
4.3.2. Identification of Material Parameters for Small Crack Propagation Equation
5. Results and Discussion
5.1. Determining the Statistical Variable Describing the Inhomogeneity
5.2. Analysis of Local Stress and Strain Field on the Free Surface
5.3. Prediction of Low-Cycle-Fatigue Crack Initiation Life
5.3.1. Nucleation Life Based on the Evolutions of the Inhomogeneity on the Free Surface
5.3.2. Small Crack Propagation Life Prediction Based on Microscale Multiaxial Strain
5.3.3. Fatigue Crack Initiation Life Prediction Based on the Combination of Inhomogeneity and Microscale Multiaxial Strain
6. Conclusions
- (1)
- By performing a statistical analysis of the RVE and its free surface, it was proven that, even if there are no machining defects or damage on the free surface of the specimen, this is still the most dangerous place for fatigue nucleation to occur due to the evolution of inhomogeneous deformation. Additionally, stress-assisted FIP based on the statistical method is capable of expressing the degree of inhomogeneity of UFG material.
- (2)
- Regarding the two newly proposed FIPs as the driving force for the nucleation and small crack propagation, we predicted the nucleation life and small crack propagation life with respect to different probability factors. The predicted accuracy of the fatigue crack initiation life based on only one FIP was acceptable when the error bands were set in the range of ±3.
- (3)
- When the phase of nucleation accounted for 50% to 70% of the LCF crack initiation life for three different strain amplitudes, the predicted accuracy of the developed numerical process was improved, with all the predicted data points lying within the ±1.5 error band. The proposed methodology accompanied by the two FIPs provides new insights into the early stage of the LCF fatigue behavior of UFG AA.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
UFG AA | Ultrafine-grained aluminum alloy |
CPFE | Crystal plasticity finite element |
FIP | Fatigue indicator parameter |
RVE | Representative volume element |
EBSD | Electron backscatter diffraction |
LCF | Low cycle fatigue |
HCF | High cycle fatigue |
F–S | Fatemi and Socie |
NPCAH | Non-proportional cyclic additional hardening |
Fatigue nucleation life | |
Small crack propagation life | |
FIP for the whole RVE | |
FIP on the free surface | |
FIP for small crack propagation | |
Effective yield strength of UFG and its CG counterparts | |
The dot product of normal stress and mesoscopic longitudinal strain for the RVE and its free surface | |
Cyclic stress–strain hardening exponent and coefficient | |
Normal strain on the slip system | |
Equivalent multiaxial strain reflecting non-proportional cyclic additional hardening | |
Mean equivalent normal strain amplitude | |
Mean shear strain amplitude | |
Mean normal strain amplitude | |
Vint | Interaction energy |
The accumulated mean multiaxial damage strain in FDR | |
The strain in cyclic plastic region | |
The radius of the fatigue damage region | |
C11, C12, C44 | Elastic constants |
Crack length, initial crack length and critical crack length | |
Back stress on the αth slip system | |
Resolved shear stress on the αth slip system | |
Cyclic stress amplitude, effective stress amplitude | |
Initial dislocation density | |
Burgers vector | |
Activation energy | |
m | Activation length parameter |
Boltzmann constant | |
p, q | Exponential constants |
T | Tested temperature |
dmean | Mean grain size |
G | Shear modulus |
Latent hardening ratio | |
Attempt frequency | |
Hardening matrix | |
Material constant | |
Dynamic recovery parameter | |
Hardening constant | |
Activation energy of grain boundary diffusion | |
Activation energy | |
u | Material parameter |
Mesoscopic longitudinal strain for the RVE and its free surface | |
Normal stress for the RVE and its free surface | |
Maximum plastic shear strain amplitude | |
Total fatigue initiation life | |
Fatigue nucleation life | |
Lattice friction stress at the current temperature | |
Fatigue damage region | |
Grain boundary strengthening factor | |
Grain boundary constraint factor | |
Crack tip opening displacement | |
Slip resistance on the αth slip system | |
Small crack propagation life | |
FCP | Fatigue crack propagation |
FN | Fatigue nucleation |
References
- Stojanovic, B.; Milan, B.; Epler, I. Application of Aluminum and Aluminum Alloys in Engineering. Appl. Eng. Lett. J. Eng. Appl. Sci. 2018, 3, 52–62. [Google Scholar] [CrossRef]
- Li, H.; Yan, Z.; Cao, L. Bake hardening behavior and precipitation kinetic of a novel Al-Mg-Si-Cu aluminum alloy for lightweight automotive body. Mater. Sci. Eng. A 2018, 728, 88–94. [Google Scholar] [CrossRef]
- Lipinska, M.; Chrominski, W.; Olejnik, L.; Golinski, J.; Rosochowski, A.; Lewandowska, M. Ultrafine-Grained Plates of Al-Mg-Si Alloy Obtained by Incremental Equal Channel Angular Pressing: Microstructure and Mechanical Properties. Metall. Mater. Trans. A 2017, 48, 4871–4882. [Google Scholar] [CrossRef]
- Malekjani, S.; Hodgson, P.D.; Cizek, P.; Sabirov, I.; Hilditch, T.B. Cyclic deformation response of UFG 2024 Al alloy. Int. J. Fatigue 2011, 33, 700–709. [Google Scholar] [CrossRef]
- Chen, B.; Jiang, J.; Dunne, F.P.E. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? Int. J. Plast. 2018, 101, 213–229. [Google Scholar] [CrossRef]
- Manonukul, A.; Dunne, F. High- and low-cycle fatigue crack initiation using polycrystal plasticity. Proc. R. Soc. A Math. Phys. Eng. Sci. 2004, 460, 1881–1903. [Google Scholar] [CrossRef]
- Cruzado, A.; Lucarini, S.; Llorca, J.; Segurado, J. Microstructure-based fatigue life model of metallic alloys with bilinear Coffin-Manson behavior. Int. J. Fatigue 2018, 107, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, C.A.; O’Brien, B.; Dunne, F.P.E.; McHugh, P.E.; Leen, S.B. Strain-gradient modelling of grain size effects on fatigue of CoCr alloy. Acta Mater. 2014, 78, 341–353. [Google Scholar] [CrossRef]
- Mughrabi, H. Microstructural fatigue mechanisms: Cyclic slip irreversibility, crack initiation, non-linear elastic damage analysis. Int. J. Fatigue 2013, 57, 2–8. [Google Scholar] [CrossRef]
- Zhang, K.S.; Wu, M.S.; Feng, R. Simulation of microplasticity-induced deformation in uniaxially strained ceramics by 3-D Voronoi polycrystal modeling. Int. J. Plast. 2005, 21, 801–834. [Google Scholar] [CrossRef]
- Zhang, K.-S.; Ju, J.W.; Li, Z.; Bai, Y.-L.; Brocks, W. Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity. Mech. Mater. 2015, 85, 16–37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.-S.; Shi, Y.-K.; Ju, J.W. Grain-level statistical plasticity analysis on strain cycle fatigue of a FCC metal. Mech. Mater. 2013, 64, 76–90. [Google Scholar] [CrossRef]
- Mughrabi, H.; Höppel, H.W. Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 2010, 32, 1413–1427. [Google Scholar] [CrossRef]
- Macek, W.; Branco, R.; Costa, J.D.; Trembacz, J. Fracture Surface Behavior of 34CrNiMo6 High-Strength Steel Bars with Blind Holes under Bending-Torsion Fatigue. Materials 2021, 15, 80. [Google Scholar] [CrossRef]
- Kujawski, N.D. Sequence effects of small amplitude cycles on fatigue crack initiation and propagation in 2024-T351 aluminum. Int. J. Fatigue 2001, 23, 807–815. [Google Scholar]
- Zhuge, H. Experimental and Numerical Study of Combined High and Low Cycle Fatigue Performance of Low Alloy Steel and Engineering Application. Materials 2021, 14, 3395. [Google Scholar]
- Yuan, H.; Zhang, W.; Castelluccio, G.M.; Kim, J.; Liu, Y. Microstructure-sensitive estimation of small fatigue crack growth in bridge steel welds. Int. J. Fatigue 2018, 112, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Moshtaghi, M.; Safyari, M. Effect of Work-Hardening Mechanisms in Asymmetrically Cyclic-Loaded Austenitic Stainless Steels on Low-Cycle and High-Cycle Fatigue Behavior. Steel Res. Int. 2020, 92, 2000242. [Google Scholar] [CrossRef]
- Pineau, A.; McDowell, D.L.; Busso, E.P.; Antolovich, S.D. Failure of metals II: Fatigue. Acta Mater. 2016, 107, 484–507. [Google Scholar] [CrossRef]
- Castelluccio, G.M.; McDowell, D.L. Mesoscale modeling of microstructurally small fatigue cracks in metallic polycrystals. Mater. Sci. Eng. A 2014, 598, 34–55. [Google Scholar] [CrossRef]
- Castelluccio, G.M.; McDowell, D.L. Microstructure-sensitive small fatigue crack growth assessment: Effect of strain ratio, multiaxial strain state, and geometric discontinuities. Int. J. Fatigue 2016, 82, 521–529. [Google Scholar] [CrossRef]
- Przybyla, C.P.; Musinski, W.D.; Castelluccio, G.M.; McDowell, D.L. Microstructure-sensitive HCF and VHCF simulations. Int. J. Fatigue 2013, 57, 9–27. [Google Scholar] [CrossRef]
- Yang, M.; Lu, S. A microstructure-based homogenization model for predicting the low-cycle fatigue initiation life of GH4169 superalloy. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 1546–1561. [Google Scholar] [CrossRef]
- Sonsino, C.M. Multiaxial fatigue life response depending on proportionality grade between normal and shear strains/stresses and material ductility. Int. J. Fatigue 2020, 135, 105468. [Google Scholar] [CrossRef]
- Albinmousa, J. Investigation on multiaxial fatigue crack path using polar stress–strain representation. Int. J. Fatigue 2016, 92, 406–414. [Google Scholar] [CrossRef]
- Tong, J.; Lin, B.; Lu, Y.W.; Madi, K.; Tai, Y.H.; Yates, J.R.; Doquet, V. Near-tip strain evolution under cyclic loading: In situ experimental observation and numerical modelling. Int. J. Fatigue 2015, 71, 45–52. [Google Scholar] [CrossRef]
- Zhao, B.; Xie, L.; Song, J.; Zhao, Z.; Xu, G. Prediction of multiaxial fatigue life for complex three-imensional stress state considering effect of additional hardening. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 2558–2578. [Google Scholar] [CrossRef]
- Itoh, T.; Nakamura, H.; Takanashi, M.; Wu, M. Multiaxial low cycle fatigue life of Ti-6Al-4V under non-proportional loading with mean strain. Theor. Appl. Fract. Mech. 2017, 90, 165–173. [Google Scholar] [CrossRef]
- Jiang, W.; Yang, P. Experimental studies on crack propagation and accumulative mean strain of cracked stiffened plates under low-cycle fatigue loads. Ocean. Eng. 2020, 214, 107744. [Google Scholar] [CrossRef]
- Ding, H.Z.; Mughrabi, H.; Höppel, H.W. Alow-cycle fatigue life prediction model of ultrafine-grained metals. Fatigue Fract. Eng. Mater. Struct. 2002, 25, 975–984. [Google Scholar] [CrossRef]
- Sga, B.; Sm, B. Fracture toughness characteristics of ultrafine grained Nb–Ti stabilized microalloyed and interstitial free steels processed by advanced multiphase control rolling. Mater. Charact. 2020, 159, 110003. [Google Scholar]
- Hohenwarter, A.; Pippan, R. Fracture toughness evaluation of ultrafine-grained nickel. Scr. Mater. 2011, 64, 982–985. [Google Scholar] [CrossRef]
- Kumar, N.; Owolabi, G.M.; Jayaganthan, R. Al 6082 alloy strengthening through low strain multi-axial forging. Mater. Charact. 2019, 155, 109761. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, S.; Jayaganthan, R.; Owolabi, G.M. The influence of metallurgical factors on low cycle fatigue behavior of ultra-fine grained 6082 Al alloy. Int. J. Fatigue 2018, 110, 130–143. [Google Scholar] [CrossRef]
- Hockauf, K.; Wagner, M.F.X.; Halle, T.; Niendorf, T.; Hockauf, M.; Lampke, T. Influence of precipitates on low-cycle fatigue and crack growth behavior in an ultrafine-grained aluminum alloy. Acta Mater. 2014, 80, 250–263. [Google Scholar] [CrossRef]
- Kato, M. Thermally activated dislocation depinning at a grain boundary in nanocrystalline and ultrafine-grained materials. Mater. Sci. Eng. A 2009, 516, 276–282. [Google Scholar] [CrossRef]
- Li, D.-F.; Barrett, R.A.; O’Donoghue, P.E.; O’Dowd, N.P.; Leen, S.B. A multi-scale crystal plasticity model for cyclic plasticity and low-cycle fatigue in a precipitate-strengthened steel at elevated temperature. J. Mech. Phys. Solids 2017, 101, 44–62. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Goyal, A.; Doquet, V.; Ranc, N.; Couzinié, J.-P. Ultrafine versus coarse grained Al 5083 alloys: From low-cycle to very-high-cycle fatigue. Int. J. Fatigue 2019, 121, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.H.; Brown, M.W. A path-independent parameter for fatigue under proportional and non-proportional loading. Fatigue Fract. Eng. Mater. Struct. 1993, 16, 1285–1297. [Google Scholar] [CrossRef]
- McDowell, D.L.; Berard, J.Y. A ΔJ-based approach to biaxial fatigue. Fatigue Fract. Eng. Mater. Struct. 1992, 15, 719–741. [Google Scholar] [CrossRef]
- Kinoshita, K.; Shimokawa, T.; Kinari, T. Grain Boundary Structure Dependence of Extrinsic Grain Boundary Dislocation Emission Phenomena: A Molecular Dynamics Study. Mater. Trans. 2012, 53, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.; Li, Y.; Xiao, H.; Wang, Z.; Wang, M.; Chen, D.; Wang, H. Deformation-induced ultrafine grains near fatigue crack tip and correlative fatigue damage in Al matrix composite. Scr. Mater. 2021, 193, 49–54. [Google Scholar] [CrossRef]
- Rice, J.R. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. J. Appl. Mech. 1968, 35, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Esmaeili, A.; Shaeri, M.H.; Noghani, M.T.; Razaghian, A. Fatigue behavior of AA7075 aluminium alloy severely deformed by equal channel angular pressing. J. Alloys Compd. 2018, 757, 324–332. [Google Scholar] [CrossRef]
- Fintová, S.; Arzaghi, M.; Kuběna, I.; Kunz, L.; Sarrazin-Baudoux, C. Fatigue crack propagation in UFG Ti grade 4 processed by severe plastic deformation. Int. J. Fatigue 2017, 98, 187–194. [Google Scholar] [CrossRef]
- Goto, M.; Yamamoto, T.; Han, S.Z.; Lim, S.H.; Kim, S.; Ahn, J.H.; Lee, S.J.; Yakushiji, T.; Lee, J. Crack initiation mechanism in ultrafine-grained copper fabricated by severe plastic deformation in the high-cycle fatigue regime. Mater. Sci. Eng. A 2020, 788, 139569. [Google Scholar] [CrossRef]
- Rao, P.N.; Singh, D.; Brokmeier, H.G.; Jayaganthan, R. Effect of ageing on tensile behavior of ultrafine grained Al 6061 alloy. Mater. Sci. Eng. A 2015, 641, 391–401. [Google Scholar] [CrossRef]
- Ma, K.; Wen, H.; Tao, H.; Topping, T.D.; Schoenung, J.M. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014, 62, 141–155. [Google Scholar] [CrossRef]
- Rice, J.R. Mechanics of Crack Tip Deformation and Extension by Fatigue. In Fatigue Crack Propagation; American Society for Testing and Materials: West Conshohocken, PA, USA, 1967. [Google Scholar]
- Broek, D. Elementary Engineering Fracture Mechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Khan, A.S.; Liu, J. A deformation mechanism based crystal plasticity model of ultrafine-grained/nanocrystalline FCC polycrystals. Int. J. Plast. 2016, 86, 56–69. [Google Scholar] [CrossRef]
- Busso, E.P.; McClintock, F.A. A dislocation mechanics-based crystallographic model of a B2-type intermetallic alloy. Int. J. Plast. 1996, 12, 1–28. [Google Scholar] [CrossRef]
- Dong, Y.; Kang, G.; Yu, C. A dislocation-based cyclic polycrystalline visco-plastic constitutive model for ratchetting of metals with face-centered cubic crystal structure. Comput. Mater. Sci. 2014, 91, 75–82. [Google Scholar] [CrossRef]
- Le Pécheur, A.; Curtit, F.; Clavel, M.; Stephan, J.M.; Rey, C.; Bompard, P. Polycrystal modelling of fatigue: Pre-hardening and surface roughness effects on damage initiation for 304L stainless steel. Int. J. Fatigue 2012, 45, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Fujita, T.; Horita, Z.; Langdon, T.G. Using grain boundary engineering to evaluate the diffusion characteristics in ultrafine-grained Al–Mg and Al–Zn alloys. Mater. Sci. Eng. A 2004, 371, 241–250. [Google Scholar] [CrossRef]
- Koju, R.K.; Mishin, Y. Atomistic study of grain-boundary segregation and grain-boundary diffusion in Al-Mg alloys. Acta Mater. 2020, 201, 596–603. [Google Scholar] [CrossRef]
- Padmanabhan, K.A.; Basariya, M.R. Mesoscopic grain boundary sliding as the rate controlling process for high strain rate superplastic deformation. Mater. Sci. Eng. A 2009, 527, 225–234. [Google Scholar] [CrossRef]
- Zha, M.; Li, Y.; Mathiesen, R.H.; Bjørge, R.; Roven, H.J. Microstructure evolution and mechanical behavior of a binary Al–7Mg alloy processed by equal-channel angular pressing. Acta Mater. 2015, 84, 42–54. [Google Scholar] [CrossRef]
- Davidson, D.L.; Mcclung, R.C. Local constraint near fatigue cracks in alloys and particulate composites. Int. J. Fract. 1997, 84, 81–98. [Google Scholar] [CrossRef]
- Hultgren, G.; Mansour, R.; Barsoum, Z.; Olsson, M. Fatigue probability model for AWJ-cut steel including surface roughness and residual stress. J. Constr. Steel Res. 2021, 179, 106537. [Google Scholar] [CrossRef]
- Das, P.; Jayaganthan, R.; Chowdhury, T.; Singh, I.V. Fatigue behaviour and crack growth rate of cryorolled Al 7075 alloy. Mater. Sci. Eng. A 2011, 528, 7124–7132. [Google Scholar] [CrossRef]
Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti |
---|---|---|---|---|---|---|---|
0.586 | 0.241 | 0.264 | 0.095 | 0.945 | 0.07 | 0.024 | 0.005 |
Elastic Constants and Flow Parameters | Hardening Parameters | ||||
---|---|---|---|---|---|
Parameter | Dimension | Value | Parameter | Dimension | Value |
C11 | MPa | 77,159 | dmean | μm | 1.08 |
C12 | MPa | 55,706 | G | MPa | 26,209 |
C44 | MPa | 35,910 | - | 1.0 | |
s−1 | 1013 | - | 1.1 | ||
1014 mm−2 | 1.5 | - | 0.014 | ||
c | - | 0.014 | - | ||
nm | 0.286 [47] | MPa | 118 | ||
ev | 1.4 [51] | MPa | 8831 | ||
m | - | 0.28 | J/mol | 87,000 [51] | |
J/K | u | - | 3.55 | ||
p | - | 0.99 | |||
q | - | 1.01 | |||
T | K | 298 |
Materials | Cyclic Yield Strength | Strengthening Factor | ||
---|---|---|---|---|
UFG 6061AA/RT State | 0.21 | 484 | 139 | 2.1 |
CG AA6061/RT State | 0.15 | 168 | 66 |
30% Probability | 50% Probability | ||||||||||||||
2.6 | 4.8 | 7 | 9.2 | 11.4 | 13.6 | 15.8 | 6.7 | 10.25 | 13.8 | 17.35 | 20.9 | 24.45 | 28 | ||
0.5% | 258 | 313 | 450 | 568 | 680 | 804 | 908 | 438 | 621 | 820 | 1013 | 1201 | 1406 | 1589 | |
0.6% | 131 | 198 | 260 | 302 | 386 | 426 | 502 | 245 | 336 | 443 | 527 | 642 | 718 | 827 | |
0.7% | 113 | 167 | 194 | 237 | 271 | 302 | 360 | 189 | 256 | 313 | 380 | 430 | 495 | 543 | |
70% Probability | 100% Probability | ||||||||||||||
9 | 14.2 | 19.4 | 24.6 | 29.8 | 35 | 40.2 | 14 | 21.3 | 28.6 | 35.9 | 43.2 | 50.5 | 57.8 | ||
0.5% | 551 | 846 | 1118 | 1406 | 1693 | 1981 | 2265 | 830 | 1223 | 1615 | 2010 | 2400 | 2818 | 3185 | |
0.6% | 310 | 450 | 596 | 728 | 889 | 1026 | 1157 | 445 | 652 | 851 | 1054 | 1245 | 1436 | 1653 | |
0.7% | 265 | 380 | 497 | 428 | 667 | 765 | 880 | 378 | 512 | 670 | 802 | 933 | 1081 | 1228 |
0.5 | 3125/2173/2589 | 2629 | 2010 | −0.24 | 1608 | −0.39 |
0.6 | 1653/986/1213 | 1284 | 1054 | −0.18 | 704 | −0.45 |
0.7 | 512/378/681 | 524 | 802 | 0.53 | 349 | −0.33 |
N1: 30%(FN) + 70%(FCP) | N2: 50%(FN) + 50%(FCP) | N3: 70%(FN) + 30%(FCP) | N4: Previous Published Method | ||||
---|---|---|---|---|---|---|---|
N1 | N2 | N3 | N4 | ||||
1774 | −0.33 | 1978 | −0.25 | 2210 | −0.16 | 1853 | −0.30 |
830 | −0.35 | 949 | −0.26 | 1079 | −0.16 | 1385 | 0.08 |
499 | −0.05 | 589 | 0.12 | 602 | 0.15 | 856 | 0.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Qin, L.; Xie, Y.; Zheng, Z.; Xie, C.; Huang, Z. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain. Materials 2022, 15, 3403. https://doi.org/10.3390/ma15093403
Sun T, Qin L, Xie Y, Zheng Z, Xie C, Huang Z. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain. Materials. 2022; 15(9):3403. https://doi.org/10.3390/ma15093403
Chicago/Turabian StyleSun, Teng, Lidu Qin, Yiji Xie, Zhanguang Zheng, Changji Xie, and Zeng Huang. 2022. "An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain" Materials 15, no. 9: 3403. https://doi.org/10.3390/ma15093403
APA StyleSun, T., Qin, L., Xie, Y., Zheng, Z., Xie, C., & Huang, Z. (2022). An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain. Materials, 15(9), 3403. https://doi.org/10.3390/ma15093403