Effective Halogen-Free Flame-Retardant Additives for Crosslinked Rigid Polyisocyanurate Foams: Comparison of Chemical Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Flame-Retardant Additives
2.2.1. Phospha-Michael Additions
2.2.2. Phospha-Aldol Reactions
2.3. Foam Preparation
2.4. Foam Properties
2.5. Chemical Analysis
2.5.1. Nuclear Magnetic Resonance Spectroscopy
2.5.2. Raman Spectroscopy
2.5.3. Elemental Analysis
2.5.4. Quantitative Phosphorus Content
2.5.5. Titration of OH Groups
2.6. Thermal Decomposition Behavior
2.7. Fire Behavior
2.7.1. Vertical Flame Spread (VFS)
2.7.2. Cone Calorimeter Test (Forced Flaming Combustion)
2.7.3. Morphology of the Remaining Chars
3. Results and Discussion
3.1. Synthesis of Phospha-Michael and Phospha-Aldol Derivatives of BPPO and DOPO
3.2. Characteristic Parameters of the PIR Foams Prepared under Comparable Conditions
3.3. Thermal Decomposition and Pyrolysis
3.4. Fire Behavior
3.4.1. Vertical Flame Spread (VFS)
3.4.2. Forced Flaming Combustion (Cone Calorimeter)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banhart, J. Aluminum Foams: On the Road to Real Applications. MRS Bull. 2003, 28, 290–295. [Google Scholar] [CrossRef]
- Standau, T.; Schreiers, P.; Hilgert, K.; Altstädt, V.; Hädelt, B.; Schreier, P.; Altstädt, V. Development of a Bead Foam from an Engineering Polymer with Addition of Chain Extender: Expanded Polybutylene Terephthalate. Ind. Eng. Chem. Res. 2018, 57, 17170–17176. [Google Scholar] [CrossRef]
- Schulz, J.; Kent, D.; Crimi, T.; Glockling, J.L.D.; Hull, T.R. A Critical Appraisal of the UK’s Regulatory Regime for Combustible Façades. Fire Technol. 2021, 57, 261–290. [Google Scholar] [CrossRef]
- Peck, G.; Jones, N.; McKenna, S.T.; Glockling, J.L.D.; Harbottle, J.; Stec, A.A.; Hull, T.R. Smoke toxicity of rainscreen façades. J. Hazard. Mater. 2021, 403, 123694. [Google Scholar] [CrossRef] [PubMed]
- Engels, H.W.; Pirkl, H.G.; Albers, R.; Albach, R.W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Polyurethanes: Versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem.-Int. Ed. 2013, 52, 9422–9441. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, D.K.; Webster, D.C. Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 2009, 34, 1068–1133. [Google Scholar] [CrossRef]
- Joseph, P.; Tretsiakova-Mcnally, S. Reactive modifications of some chain- and step-growth polymers with phosphorus-containing compounds: Effects on flame retardance-a review. Polym. Adv. Technol. 2011, 22, 395–406. [Google Scholar] [CrossRef]
- Günther, M.; Lorenzetti, A.; Schartel, B. From Cells to Residues: Flame-Retarded Rigid Polyurethane Foams. Combust. Sci. Technol. 2020, 192, 2209–2237. [Google Scholar] [CrossRef]
- Albach, R.W.; Schedler, M. Process for Producing Rigid, Flame-Retardant PU/PIR Foam. WO 2019/192832 A1, 22 April 2019. [Google Scholar]
- Blum, A.; Behl, M.; Birnbaum, L.S.; Diamond, M.L.; Phillips, A.; Singla, V.; Sipes, N.S.; Stapleton, H.M.; Venier, M. Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers?|Enhanced Reader. Environ. Sci. Technol. Lett. 2019, 6, 638–649. [Google Scholar] [CrossRef] [Green Version]
- Velencoso, M.M.; Battig, A.; Markwart, J.C.; Schartel, B.; Wurm, F.R. Molecular Firefighting—How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy. Angew. Chem.-Int. Ed. 2018, 57, 10450–10467. [Google Scholar] [CrossRef]
- Albach, R.W.; Schleiermacher, S.; Schaefer, H.-J.; Huiber, H.-P.; Neumann, A.; Welsch, N.; Loevenich, C. Methods for Producing Flame-Retardant PUR/PIR Foam Materials. WO 2020/201187 A1, 8 October 2020. [Google Scholar]
- Salmeia, K.A.; Gaan, S. An overview of some recent advances in DOPO-derivatives: Chemistry and flame retardant applications. Polym. Degrad. Stab. 2015, 113, 119–134. [Google Scholar] [CrossRef]
- Perret, B.; Schartel, B.; Stöß, K.; Ciesielski, M.; Diederichs, J.; Döring, M.; Krämer, J.; Altstädt, V. Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. Eur. Polym. J. 2011, 47, 1081–1089. [Google Scholar] [CrossRef]
- Sag, J.; Goedderz, D.; Kukla, P.; Greiner, L.; Schönberger, F.; Döring, M. Phosphorus-Containing Flame Retardants from Biobased Chemicals and Their Application in Polyesters and Epoxy Resins. Molecules 2019, 24, 3746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, P.; Bykov, Y.; Döring, M. New star-shaped phosphorus-containing flame retardants based on acrylates for epoxy resins. Polym. Adv. Technol. 2013, 24, 834–840. [Google Scholar] [CrossRef]
- Bykov, Y.; Wagner, S.; Walter, O.; Döring, M.; Fischer, O.; Pospiech, D.; Köppl, T.; Altstädt, V. Synthesis of new dibenzo[c.e][1,2]oxaphosphorine 2-oxide containing diols based on diethanolamine. Heteroat. Chem. 2012, 23, 146–153. [Google Scholar] [CrossRef]
- Fischer, O.; Pospiech, D.; Korwitz, A.; Sahre, K.; Häußler, L.; Friedel, P.; Fischer, D.; Harnisch, C.; Bykov, Y.; Döring, M.; et al. Synthesis and properties of phosphorus polyesters with systematically altered phosphorus environment. Polym. Degrad. Stab. 2011, 96, 2198–2208. [Google Scholar] [CrossRef]
- Lenz, J.; Pospiech, D.; Komber, H.; Paven, M.; Albach, R.; Mentizi, S.; Langstein, G.; Voit, B. Synthesis of the H-phosphonate dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide and the phospha-Michael addition to unsaturated compounds. Tetrahedron 2019, 75, 1306–1310. [Google Scholar] [CrossRef]
- Rádai, Z.; Keglevich, G. Synthesis and reactions of α-hydroxyphosphonates. Molecules 2018, 23, 1493. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Chen, W.; Hong, B.; Zhao, Y.; Fang, M. Synthesis, characterizations, and crystal structures of α-hydroxyphosphonic acid esters. Phosphorus Sulfur Silicon Relat. Elem. 2010, 185, 2182–2193. [Google Scholar] [CrossRef]
- Salin, A.V.; Iljin, A.V.; Shamsutdinova, F.G.; Fatkhutdinov, A.R.; Islamov, D.R.; Kataeva, O.N.; Galkin, V.I. The Pudovik Reaction Catalyzed by Tertiary Phosphines. Curr. Org. Synth. 2015, 13, 132–141. [Google Scholar] [CrossRef]
- Kiss, N.Z.; Rádai, Z.; Mucsi, Z.; Keglevich, G. Synthesis of α-aminophosphonates from α-hydroxyphosphonates; a theoretical study. Heteroat. Chem. 2016, 27, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhao, J.; Chen, J. Flame-retardant latent epoxy curing agent and halogen-free flame-retardant one-component epoxy resin composition. Chinese Patent CN102174173B, 5 September 2021. [Google Scholar]
- Cao, Y.; Wang, X.L.; Zhang, W.Q.; Yin, X.W.; Shi, Y.Q.; Wang, Y.Z. Bi-DOPO Structure Flame Retardants with or without Reactive Group: Their Effects on Thermal Stability and Flammability of Unsaturated Polyester. Ind. Eng. Chem. Res. 2017, 56, 5913–5924. [Google Scholar] [CrossRef]
- Seibold, S.; Schäfer, A.; Lohstroh, W.; Walter, O.; Döring, M. Phosphorus-Containing Terephthaldialdehyde Adducts-Structure Dezermination and their Application as Flame Retardants in Epoxy Resins. J. Appl. Polym. Sci. 2007, 108, 264–271. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Qian, Q.; Yuan, D.; Yao, Y. N-BuLi as a highly efficient precatalyst for hydrophosphonylation of aldehydes and unactivated ketones. Org. Lett. 2014, 16, 6172–6175. [Google Scholar] [CrossRef] [PubMed]
- Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—The US Department of Energy’s “top 10” revisited. Green Chem. 2010, 12, 539–555. [Google Scholar] [CrossRef]
- Lenz, J.; Pospiech, D.; Paven, M.; Albach, R.W.; Günther, M.; Schartel, B.; Voit, B. Improving the flame retardance of polyisocyanurate foams by dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide-containing additives. Polymers 2019, 11, 1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.Z. Crystal structure of 6-(hydroxy(phenyl)methyl)-6H-dibenzo[c,e][1,2]-oxaphosphinine 6-oxide, C19H15O3P. Z. Fur Krist.-New Cryst. Struct. 2014, 229, 227–228. [Google Scholar] [CrossRef] [Green Version]
- Kumaraswami, S.; Selvi, R.S.; Swamy, K.C.K. Synthesis of New alpha-Hydroxy-, alpha-Halogeno- and Vinylphosphonates Derived from 5,5-Dimethy-1,2,3-dioxaphosphinan-2-one. Synthesis 1997, 148, 148–162. [Google Scholar]
- Lenz, J.; Pospiech, D.; Paven, M.; Albach, R.W.; Voit, B. Influence of the catalyst concentration on the chemical structure, the physical properties and the fire behavior of rigid polyisocyanurate foams. Polym. Degrad. Stab. 2020, 177, 109168. [Google Scholar] [CrossRef]
- Günther, M.; Lorenzetti, A.; Schartel, B. Fire phenomena of rigid polyurethane foams. Polymers 2018, 10, 1166. [Google Scholar] [CrossRef] [Green Version]
- Lorenzetti, A.; Modesti, M.; Gallo, E.; Schartel, B.; Besco, S.; Roso, M. Synthesis of phosphinated polyurethane foams with improved fire behaviour. Polym. Degrad. Stab. 2012, 97, 2364–2369. [Google Scholar] [CrossRef]
- Lenz, J. Struktur-Eigenschafts-Beziehungen in der Leistungsfähigkeit von Phosphorhaltigen Flammschutzmitteln für Polyurethan-Schäume. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2020. [Google Scholar]
- Schartel, B.; Wilkie, C.A.; Camino, G. Recommendations on the scientific approach to polymer flame retardancy: Part 2—Concepts. J. Fire Sci. 2017, 35, 3–20. [Google Scholar] [CrossRef]
- Scharte, B. Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development? Materials 2010, 3, 4710–4745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Walters, R.N.; Lyon, R.E.; Crowley, S. Effect of phosphorus on soot formation and flame retardancy in fires. Fire Saf. J. 2021, 120, 103068. [Google Scholar] [CrossRef]
- Jones, N.; Peck, G.; McKenna, S.T.; Glockling, J.L.D.; Harbottle, J.; Stec, A.A.; Hull, T.R. Burning behaviour of rainscreen façades. J. Hazard. Mater. 2021, 403, 123894. [Google Scholar] [CrossRef]
Entry | BPPO/DOPO Added to | Chemical Structure | Abbreviation | P Content [wt.%] | Yield [%] | Mp [°C] |
---|---|---|---|---|---|---|
1a | Paraformaldehyde | FA-BPPO | 11.8 | 76 | 175 | |
2a | Acetaldehyde | AA-BPPO | 11.2 | 68 | 143 | |
3a | Furfural | FU-BPPO | 9.4 | 94 | 162 | |
4a | Benzaldehyde | BA-BPPO | 9.2 | 82 | 183 | |
5a | Terephthalaldehyde | TA-BPPO | 10.3 | 87 | 214 | |
1b | Paraformaldehyde | FA-DOPO | 12.6 | 55 | 161 | |
2b | Acetaldehyde | AA-DOPO | 10.6 | 63 | 187 | |
3b | Furfural | FU-DOPO | 9.9 | 89 | 156 | |
4b | Benzaldehyde | BA-DOPO | 9.6 | 67 | 184 | |
5b | Terepthalaldehyde | TA-DOPO | 10.1 | 77 | 234 |
Formulation Component | Amount [g] |
---|---|
Polyester polyol (Desmophen® PEP50 AD) | 53.0 |
Poly(ethylene glycol) PEG 400 | 16.0 |
Triethyl phosphate (TEP) | 5.0 |
Stabilizer (TEGOSTAB® B 8421) | 4.0 |
Emulsifier (Emulsogen® TS100) | 2.0 |
Catalyst (KAc, 25 wt.% in DEG) | 2.5 |
Blowing Agent (pentane) | 15.0 |
Flame Retardant (a) | variable |
Polyisocyanate (DESMODUR® 44V70L) | 151.8 |
Foam Name (Contg. Used FR) | OH Groups | Comment | Density [kg⋅m−3] | WAv [Vol%] | Pore Size [mm] |
---|---|---|---|---|---|
0 (PIR-0) | 0 | Control | 36 | 7 | 0.17 |
TEP-0.3 | 0 | Control | 36 | 4 | 0.18 |
TEP-0.7 | 0 | Control | 32 | 4 | n. m. |
TPP-0.7 | 0 | Control | 36 | 5 | 0.17 |
TPP/TEP-1.0 | 0 | benchmark | 38 | 5 | 0.15 |
EA-BPPO-0.7 | 0 | aliphatic | 36 | 7 | 0.29 |
EA-BPPO/TEP-1.0 | 0 | aliphatic | 37 | 6 | 0.19 |
PA-BPPO/TEP-1.0 | 0 | aromatic | 39 | 16 | 0.18 |
DMI-BPPO/TEP-1.0 | 0 | aliphatic | 35 | 16 | 0.16 |
DMI-DOPO/TEP-1.0 | 0 | aliphatic | 35 | 11 | 0.14 |
BuMA-DOPO (AC4-DOPO)-0.7 | 0 | aliphatic | 36 | n. m. | n. m. |
BuMA-DOPO (AC4-DOPO)/TEP-1.0 | 0 | aliphatic | 32 | n. m. | n. m. |
FA-BPPO-0.7 | 1 | aliphatic | 35 | 67 | 0.22 |
FA-BPPO/TEP-1.0 | 1 | aliphatic | 39 | 82 | 0.16 |
BA-BPPO-0.7 | 1 | aromatic | 47 | 60 | 0.18 |
BA-BPPO/TEP-1.0 | 1 | aromatic | 52 | 77 | 0.29 |
BA-DOPO-0.7 | 1 | aromatic | 36 | 91 | 0.15 |
BA-DOPO/TEP-1.0 | 1 | aromatic | 36 | 94 | 0.17 |
FU-BPPO-0.7 | 1 | aromatic | 41 | 57 | 0.17 |
FU-BPPO/TEP-1.0 | 1 | aromatic | 36 | 40 | 0.20 |
FU-DOPO-0.7 | 1 | aromatic | 37 | 98 | 0.14 |
FU-DOPO/TEP-1.0 | 1 | aromatic | 37 | 14 | 0.14 |
TA-BPPO-0.7 | 2 | aromatic | 35 | 5 | 0.17 |
TA-BPPO/TEP-1.0P | 2 | aromatic | 41 | 87 | 0.17 |
TA-DOPO-0.7P | 2 | aromatic | 36 | 6 | 0.21 |
TA-DOPO/TEP-1.0P | 2 | aromatic | 36 | 90 | 0.13 |
TA-BP-0.7P | 2 | ar-aliphatic | 36 | 76 | 0.17 |
TA-BP/TEP-1.0P | 2 | ar-aliphatic | 36 | 90 | 0.29 |
FU-BP-0.7 | 1 | ar-aliphatic | 34 | 12 | 0.18 |
FU-BP/TEP-1.0 | 1 | ar-aliphatic | 33 | 19 | 0.21 |
FA-BP-0.7 | 1 | aliphatic | 34 | 25 | 0.17 |
FA-BP/TEP-1.0 | 1 | ar-aliphatic | 38 | 30 | 0.15 |
OP560-0.7 | 2 | aliphatic | 37 | 7 | n. m. |
OP560/TEP-1.0 | 2 | aliphatic | 37 | n. m. | n. m. |
(a) | NCO-Reactive Groups | DOPO | BPPO | BP | DOPO/TEP | BPPO/TEP | BP/TEP |
---|---|---|---|---|---|---|---|
EA | no | - | 17 | - | - | 16 | - |
DMI | no | - | - | - | 14 | 15 | - |
FU | yes | - | - | 17 | 11 | - | 15 |
TA | yes | 11 | 11 | - | - | - | - |
(a) | NCO-Reactive Groups | DOPO | BPPO | BP | DOPO/TEP | BPPO/TEP | BP/TEP |
---|---|---|---|---|---|---|---|
FA | 1 | - | 18 | 16 | - | 18 | 14 |
AA | 1 | - | - | - | 15 | 18 | - |
BA | 1 | 12 | 13 | - | 11 | 12 | - |
FU | 1 | 12 | 14 | - | - | 12 | - |
TA | 2 | - | - | 12 | 14 | <10 | <10 |
Parameter | PIR-0 | TEP-0.3 | TPP-0.7 | TEP/TPP-1.0 |
---|---|---|---|---|
P content [wt.%] | 0 | 0.3 | 0.7 | 1.0 |
VFS [cm] | >20 | 18 | 15 | 14 |
MARHE [kW⋅m−2] | 172 | 128 | 145 | 111 |
Residue [wt.%] | 22.3 | 26.7 | 44.7 | 36 |
Av. char height [cm] | 3.0 | 4.0 | n.m. | 4.5 |
TSR [m2⋅ m−2] | 551 | 392 | 755 | 324 |
P content in char [wt.%] | - | 0.34 | n.m. | 0.64 |
P retention in char [%] | - | 30 | n.m. | 23 |
FR Foam with FR | OH gr. | Structure | Density [g⋅cm−3] | VFS [cm] | MARHE [kW⋅m−2] | TSR [m2 m−2] | CO Yield [kg⋅kg−1] | Residue [wt.%] | Av. Char Height [cm] | Pchar [wt.%] | P Retention in Char (a) [%] |
---|---|---|---|---|---|---|---|---|---|---|---|
PIR-0 | 0 | control | 36 | >20 | 172 | 551 | 0.04 | 22.3 | 3.0 | 0 | - |
TEP-0.3 | 0 | control | 36 | 18 | 128 | 392 | 0.05 | 26.7 | 4.0 | 0.34 | 30 |
TPP/TEP-1.0 | 0 | control | 39 | 14 | 111 | 324 | 0.10 | 36.4 | 4.5 | 0.64 | 23 |
OP560-0.7 | 2 | al | n.m. | 193 | 867 | 0.19 | 29.9 | 4.0 | 0.24 | 10 | |
EA-BPPO-0.7 | 0 | al | 37 | 17 | 132 | 501 | 0.08 | 28.2 | n.m. | ||
EA-BPPO/TEP-1.0 | 0 | al | 37 | 16 | 121 | 433 | 0.06 | 28.6 | 3.0 | 1.19 | 34 |
BuA-DOPO-0.7 | 0 | al | 37 | n.m. | 172 | 267 | 0.14 | 50.5 | 4.3 | 1.1 | 79 |
BuA-DOPO/TEP-1.0 | 0 | al | 37 | n.m. | 139 | 230 | 0.14 | 63.9 | 4.3 | 1.5 | 96 |
DMI-BPPO/TEP-1.0 | 0 | al | 35 | 15 | 118 | 317 | 0.04 | 33.2 | n.m. | n.m. | |
DMI-DOPO/TEP-1.0 | 0 | a | 35 | 14 | 108 | 371 | 0.05 | 29.4 | n.m. | n.m. | |
PA-BPPO/TEP-1.0 | 0 | ar | 39 | 11 | 111 | 360 | 31.3 | n.m. | n.m. | ||
FU-BP/TEP-1.0 | 1 | ar-al | 33 | 15 | 91 | 298 | 0.28 | 29.5 | n.m. | ||
FU-DOPO/TEP-1.0 | 1 | ar | 37 | 11 | 90 | 332 | 0.05 | 30.5 | 4.5 | n.m. | |
TA-BPPO-0.7 | 2 | ar | 35 | 11 | 86 | 342 | 0.06 | 31.9 | 3.0 | n.m. | |
TA-DOPO-0.7 | 2 | ar | 36 | 11 | 100 | 451 | 0.06 | 32.4 | 2.5 | n.m. |
Foam with FR | OH gr. | Struct-ure | Density [g⋅cm−3] | VFS [cm] | MARHE [kW⋅m−2] | TSR [m2 m−2] | CO Yield [kg⋅kg−1] | Residue [wt.%] | Av. Char Height [cm] | PChar [wt.%] | P Retention in Char (a) [%] |
---|---|---|---|---|---|---|---|---|---|---|---|
FA-BPPO-0.7 | 1 | al | 38 | 18 | 163 | 888 | 0.07 | 24.3 | 5.5 | n.m. | |
BA-BPPO-0.7 | 1 | ar | 47 | 11 | 173 | 930 | 0.07 | 28.2 | 3.0 | 0.90 | 36 |
FA-BPPO/TEP-1.0 | 1 | al | 34 | 18 | 163 | 754 | 0.06 | 27.2 | 5.5 | 1.04 | 28 |
FA-BP/TEP-1.0 | 1 | ar-al | 38 | 14 | 111 | 242 | 0.08 | 37.3 | n.m. | n.m. | |
BA-BPPO/TEP-1.0 | 1 | ar | 62 | 12 | 130 | 692 | 0.06 | 29.2 | 2.5 | n.m. | |
BA-DOPO-0.7 | 1 | ar | 36 | 12 | 108 | 556 | 0.06 | 29.1 | 2.0 | n.m. | |
BA-DOPO/TEP-1.0 | 1 | ar | 36 | 11 | 89 | 411 | 0.06 | 34.5 | 2.0 | 1.39 | 48 |
FU-BPPO-0.7 | 1 | ar | 41 | 14 | 112 | 455 | 0.08 | 31.6 | 3.5 | 0.97 | 44 |
FU-BPPO/TEP-1.0 | 1 | ar | 36 | 12 | 112 | 532 | 0.06 | 29.7 | 4.0 | n.m. | |
FU-DOPO-0.7 | 1 | ar | 37 | 12 | 105 | 449 | 0.06 | 31.0 | 3.0 | 0.81 | 36 |
TA-BPPO/TEP-1.0 | 2 | ar | 41 | <10 | 106 | 414 | 0.05 | 31.4 | n.m. | n.m. | |
TA-DOPO/TEP-1.0 | 2 | ar | 36 | 14 | 106 | 414 | 0.06 | 31.4 | 4.0 | n.m. | |
TA-BP-0.7 | 2 | ar-al | 36 | 12 | 15 | 263 | 0.18 | 23.0 | n.m. | n.m. | |
TA-BP/TEP-1.0 | 2 | ar-al | 36 | <10 | 14 | 189 | 0.17 | 26.9 | n.m. | n.m. | |
OP560/TEP-1.0 | 2 | al | 41 | n.m. | 199 | 823 | 0.20 | 27.0 | 4.2 | 0.65 | 18 |
PIR-0 (Closed-Cell) | TEP-0.3 (Closed-Cell) | TPP-0.7 (Closed-Cell) | TEP/TPP-1.0 (Closed-Cell) |
Residue: 22 wt.% P (residue): 0 wt.% | Residue: 27 wt.% P (residue): 0.34 wt.% Fraction of P retained in char to original sample: 30% | Residue: 28 wt.% P (residue): 0.24 wt.% Fraction of P retained in char to original sample: 10% | Residue: 36 wt.% P (residue): 0.64 wt.% Fraction of P retained in char to original sample: 23% |
EA-BPPO/TEP-1.0 (Closed-Cell) | BuA-DOPO (AC4-DOPO)/TEP-1.0 (Closed-Cell) | ||
Residue: 28.6 wt.% P (residue): 1.19 wt.% Fraction of P retained in char to original sample: 34% | Residue: 63.9 wt.% P (residue): 1.50 wt.% Fraction of P retained in char to original sample: 60% | ||
FA-BP/TEP-1.0 (Open-Cell) | FA-BPPO/TEP-1.0 (Open-Cell) | FA-DOPO/TEP-1.0 | |
Residue: 37.5 wt.% | Residue: 27.2 wt.% P (residue): 1.04 wt.% Fraction of P retained in char to original sample: 28% | Residue: 34.4 wt.% | |
FU-BPPO/TEP-1.0 (Open-Cell) | FU-DOPO/TEP-1.0 (Closed-Cell) | TA-BPPO/TEP-1 (Open-Cell) | TA-DOPO/TEP-1.0 (Open-Cell) |
Residue: 29.7 wt.% | Residue: 30.5 wt.% | Residue: 31.4 wt.% | Residue: 31.4 wt.% |
A | B1 | B2 | C |
---|---|---|---|
Not chemically bound but dissolved in the polymer matrix | Chemically bound to the polymer matrix as chain terminator | Dangling to the polymer matrix as substituent | Part of the polymer chains |
TEP, TPP, EA-BPPO, DMI-BPPO, BuA-DOPO | FU-BPPO, FU-DOPO, AA-BPPO | TA-DOPO, TA-BPPO | Exolit® OP 560 |
Closed-cell morphology, moderate effect on FR | Significant positive effect on FR | Significant positive effect on FR | No or weak effect on FR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenz, J.U.; Pospiech, D.; Komber, H.; Korwitz, A.; Kobsch, O.; Paven, M.; Albach, R.W.; Günther, M.; Schartel, B. Effective Halogen-Free Flame-Retardant Additives for Crosslinked Rigid Polyisocyanurate Foams: Comparison of Chemical Structures. Materials 2023, 16, 172. https://doi.org/10.3390/ma16010172
Lenz JU, Pospiech D, Komber H, Korwitz A, Kobsch O, Paven M, Albach RW, Günther M, Schartel B. Effective Halogen-Free Flame-Retardant Additives for Crosslinked Rigid Polyisocyanurate Foams: Comparison of Chemical Structures. Materials. 2023; 16(1):172. https://doi.org/10.3390/ma16010172
Chicago/Turabian StyleLenz, Johannes U., Doris Pospiech, Hartmut Komber, Andreas Korwitz, Oliver Kobsch, Maxime Paven, Rolf W. Albach, Martin Günther, and Bernhard Schartel. 2023. "Effective Halogen-Free Flame-Retardant Additives for Crosslinked Rigid Polyisocyanurate Foams: Comparison of Chemical Structures" Materials 16, no. 1: 172. https://doi.org/10.3390/ma16010172
APA StyleLenz, J. U., Pospiech, D., Komber, H., Korwitz, A., Kobsch, O., Paven, M., Albach, R. W., Günther, M., & Schartel, B. (2023). Effective Halogen-Free Flame-Retardant Additives for Crosslinked Rigid Polyisocyanurate Foams: Comparison of Chemical Structures. Materials, 16(1), 172. https://doi.org/10.3390/ma16010172