Organic Anode Materials for Lithium-Ion Batteries: Recent Progress and Challenges
Abstract
:1. Introduction
2. Fundamentals of Organic Anode Materials
2.1. Basic Components of an Electrochemical Cell
2.2. Mechanism of Charge Storage in Lithium-Ion Batteries and Working Principles of Organic Anode Materials
2.3. Types of Organic Anode Materials and Their Advantages
2.4. Advantages of Organic Anode Materials
3. Organic Anode Materials Based on Organic Carbonyl Compounds
4. Organic Anode Materials Based on Covalent Organic Frameworks (COFs)
5. Metal-Organic Framework-Based Anode Materials for LIBs and Their Practical Applications in Lithium-Ion Full Cells with Different Cathode Materials
- Abundant redox active sites afforded by organic moieties or metal ion centers for the reversible electrochemical redox reaction;
- Construction of conductive frameworks by importing heteroatoms and carbonization;
- Adjustable porous frameworks for easier Li ions and electron transmission;
- Utilization of the synergistic effect between various active sites of MOFs for next-generation LIBs with higher specific capacity.
6. Organic Compounds with Nitrogen-Containing Groups as Anode Active Material for LIBs
7. Conclusions, Challenges, and Outlooks on Further Developments of Organic Anode Materials for LIBs
7.1. Challenges and Strategies for Enhancing the Electrochemical Performance of Organic Anode Materials for LIBs
7.2. Outlooks on Further Developments of Organic Anode Materials for LIBs
- It is well-known that the theoretical capacity of an active cathode or anode material is ultimately dependent on the number of electrons transferred in each redox-active moiety and inversely proportional to the molecular weight of the organic molecule. Since organic anode materials exhibit redox activity based on redox-active centers, there is a large proportion of inactive mass which inevitably decreases the reversible capacity of the negative electrode. Therefore, enhancing the density of active centers in any redox-active organic molecule is required to boost the capacity of the negative electrode. Although the molecular design can enhance the theoretical capacity of the organic anode material, several bulk properties of the anode material, such as crystallinity or particle size, influence the practical capacities.
- The search for unexplored redox-active functional groups in organic molecules continues to stimulate fundamental investigations. The early success of advanced porous materials, such as MOFs and COFs, towards rapid and stable cycling of Li-ions, is likely to accelerate the development of new organic anode materials for LIBs. Particularly, the optimal stability of MOFs or COFs in organic solvents may enable a robust pathway to utilize the features of organic redox into stable electrode materials.
- Apart from great efforts which have been made in molecular engineering to enhance the electrochemical parameters of organic anode materials, techniques to fabricate scalable organic anode materials are another aspect of further investigations. Expanding the scope of Li-ion battery technology will require reliable solutions for future energy needs. The investigations on such organic redox-active molecules are in their infancy and will require a comprehensive assessment of various classes of organic materials and compounds to fully realize their potential.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jyoti, J.; Singh, B.P.; Tripathi, S.K. Recent Advancements in Development of Different Cathode Materials for Rechargeable Lithium Ion Batteries. J. Energy Storage 2021, 43, 103112. [Google Scholar] [CrossRef]
- Shen, Y.F.; Shen, X.H.; Yang, M.; Qian, J.F.; Cao, Y.L.; Yang, H.X.; Luo, Y.; Ai, X.P. Achieving Desirable Initial Coulombic Efficiencies and Full Capacity Utilization of Li-Ion Batteries by Chemical Prelithiation of Graphite Anode. Adv. Funct. Mater. 2021, 31, 2101181. [Google Scholar] [CrossRef]
- Xu, N.; Mei, S.; Chen, Z.; Dong, Y.; Li, W.; Zhang, C. High-Performance Li-Organic Battery Based on Thiophene-Containing Porous Organic Polymers with Different Morphology and Surface Area as the Anode Materials. Chem. Eng. J. 2020, 395, 124975. [Google Scholar] [CrossRef]
- Jiang, H.R.; Lu, Z.; Wu, M.C.; Ciucci, F.; Zhao, T.S. Borophene: A Promising Anode Material Offering High Specific Capacity and High Rate Capability for Lithium-Ion Batteries. Nano Energy 2016, 23, 97–104. [Google Scholar] [CrossRef]
- Wang, X.; Tang, S.; Guo, W.; Fu, Y.; Manthiram, A. Advances in Multimetallic Alloy-Based Anodes for Alkali-Ion and Alkali-Metal Batteries. Mater. Today 2021, 50, 259–275. [Google Scholar] [CrossRef]
- Sun, T.; Liu, C.; Wang, J.; Nian, Q.; Feng, Y.; Zhang, Y.; Tao, Z.; Chen, J. A Phenazine Anode for High-Performance Aqueous Rechargeable Batteries in a Wide Temperature Range. Nano Res. 2020, 13, 676–683. [Google Scholar] [CrossRef]
- Chae, S.; Ko, M.; Kim, K.; Ahn, K.; Cho, J. Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries. Joule 2017, 1, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.V.; Subba Rao, G.V.; Chowdari, B.V.R. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chem. Rev. 2013, 113, 5364–5457. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Zhang, L. Binder-Free Three-Dimensional Porous Structured Metal Oxides as Anode for High Performance Lithium-Ion Battery. Electrochim. Acta 2013, 105, 282–288. [Google Scholar] [CrossRef]
- Liang, C.; Gao, M.; Pan, H.; Liu, Y.; Yan, M. Lithium Alloys and Metal Oxides as High-Capacity Anode Materials for Lithium-Ion Batteries. J. Alloys Compd. 2013, 575, 246–256. [Google Scholar] [CrossRef]
- Park, C.M.; Kim, J.H.; Kim, H.; Sohn, H.J. Li-Alloy Based Anode Materials for Li Secondary Batteries. Chem. Soc. Rev. 2010, 39, 3115–3141. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Y.; Zhang, T.; Xu, D.; Lei, Z.; Wang, C.; Liu, G.; Deng, Y. FeIII Chelated Organic Anode with Ultrahigh Rate Performance and Ultra-Long Cycling Stability for Lithium-Ion Batteries. Energy Storage Mater. 2020, 24, 432–438. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Hu, X.; Fan, F.; Cai, S.; Zheng, C.; Stucky, G.D. Review on Comprehending and Enhancing the Initial Coulombic Efficiency of Anode Materials in Lithium-Ion/Sodium-Ion Batteries. Nano Energy 2020, 77, 105143. [Google Scholar] [CrossRef]
- Liang, Y.; Yao, Y. Positioning Organic Electrode Materials in the Battery Landscape. Joule 2018, 2, 1690–1706. [Google Scholar] [CrossRef]
- Liang, Y.; Tao, Z.; Chen, J. Organic Electrode Materials for Rechargeable Lithium Batteries. Adv. Energy Mater. 2012, 2, 742–769. [Google Scholar] [CrossRef]
- Lee, S.; Kwon, G.; Ku, K.; Yoon, K.; Jung, S.K.; Lim, H.D.; Kang, K. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries. Adv. Mater. 2018, 30, 1704682. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J. Prospects of Organic Electrode Materials for Practical Lithium Batteries. Nat. Rev. Chem. 2020, 4, 127–142. [Google Scholar] [CrossRef]
- Cui, C.; Ji, X.; Wang, P.F.; Xu, G.L.; Chen, L.; Chen, J.; Kim, H.; Ren, Y.; Chen, F.; Yang, C.; et al. Integrating Multiredox Centers into One Framework for High-Performance Organic Li-Ion Battery Cathodes. ACS Energy Lett. 2020, 5, 224–231. [Google Scholar] [CrossRef]
- Sieuw, L.; Lakraychi, A.E.; Rambabu, D.; Robeyns, K.; Jouhara, A.; Borodi, G.; Morari, C.; Poizot, P.; Vlad, A. Through-Space Charge Modulation Overriding Substituent Effect: Rise of the Redox Potential at 3.35 V in a Lithium-Phenolate Stereoelectronic Isomer. Chem. Mater. 2020, 32, 9996–10006. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Q.; Li, L.; Niu, Z.; Chen, J. Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries. Chem 2018, 4, 2786–2813. [Google Scholar] [CrossRef]
- Lee, M.; Hong, J.; Lopez, J.; Sun, Y.; Feng, D.; Lim, K.; Chueh, W.C.; Toney, M.F.; Cui, Y.; Bao, Z. High-Performance Sodium–Organic Battery by Realizing Four-Sodium Storage in Disodium Rhodizonate. Nat. Energy 2017, 2, 861–868. [Google Scholar] [CrossRef]
- Banda, H.; Damien, D.; Nagarajan, K.; Raj, A.; Hariharan, M.; Shaijumon, M.M. Twisted Perylene Diimides with Tunable Redox Properties for Organic Sodium-Ion Batteries. Adv. Energy Mater. 2017, 7, 1701316. [Google Scholar] [CrossRef]
- Yokoji, T.; Kameyama, Y.; Sakaida, S.; Maruyama, N.; Satoh, M.; Matsubara, H. Steric Effects on the Cyclability of Benzoquinone-type Organic Cathode Active Materials for Rechargeable Batteries. Chem. Lett. 2015, 44, 1726–1728. [Google Scholar] [CrossRef]
- Shea, J.J.; Luo, C. Organic Electrode Materials for Metal Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 5361–5380. [Google Scholar] [CrossRef]
- Gannett, C.N.; Melecio-Zambrano, L.; Theibault, M.J.; Peterson, B.M.; Fors, B.P.; Abruña, H.D. Organic Electrode Materials for Fast-Rate, High-Power Battery Applications. Mater. Rep. Energy 2021, 1, 100008. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, W.; Huang, X.; Lu, G.; Li, Y. Covalent Organic Frameworks as Electrode Materials for Metal Ion Batteries: A Current Review. Chem. Rec. 2020, 20, 1198–1219. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Gao, P.; Ebert, T.; Klyatskaya, S.; Chen, Z.; Ruben, M.; Fichtner, M. New Organic Electrode Materials for Ultrafast Electrochemical Energy Storage. Adv. Mater. 2019, 31, 1806599. [Google Scholar] [CrossRef] [Green Version]
- Schon, T.B.; McAllister, B.T.; Li, P.F.; Seferos, D.S. The Rise of Organic Electrode Materials for Energy Storage. Chem. Soc. Rev. 2016, 45, 6345–6404. [Google Scholar] [CrossRef] [Green Version]
- Veerababu, M.; Varadaraju, U.V.; Kothandaraman, R. Improved Electrochemical Performance of Lithium/Sodium Perylene-3,4,9,10-Tetracarboxylate as an Anode Material for Secondary Rechargeable Batteries. Int. J. Hydrog. Energy 2015, 40, 14925–14931. [Google Scholar] [CrossRef]
- Zheng, C.; Zhu, J.; Yang, C.; Lu, C.; Chen, Z.; Zhuang, X. The Art of Two-Dimensional Soft Nanomaterials. Sci. China Chem. 2019, 62, 1145–1193. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, C.; Zhang, F.; Qiu, F.; Zhuang, X.; Feng, X. Two-Dimensional Organic Cathode Materials for Alkali-Metal-Ion Batteries. J. Energy Chem. 2018, 27, 86–98. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, J.; Yuan, C.; Li, Q.; Wang, H. Nitrogen-Doped 3D Flower-like Carbon Materials Derived from Polyimide as High-Performance Anode Materials for Lithium-Ion Batteries. Appl. Surf. Sci. 2017, 425, 1082–1088. [Google Scholar] [CrossRef]
- Su, Y.; Liu, Y.; Liu, P.; Wu, D.; Zhuang, X.; Fan, Z.; Feng, X. Compact Coupled Graphene and Porous Polyaryltriazine-Derived Frameworks as High Performance Cathodes for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2015, 54, 1812–1816. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Jiao, S.; Yue, Q.; Gu, G.; Zhang, K.; Zhao, Y.; Kai Zhang, C. Challenges and Advances of Organic Electrode Materials for Sustainable Secondary Batteries. Exploration 2022, 2, 20220066. [Google Scholar] [CrossRef]
- Sun, T.; Xie, J.; Guo, W.; Li, D.S.; Zhang, Q. Covalent–Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries. Adv. Energy Mater. 2020, 10, 1904199. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C. Designing High Performance Organic Batteries. Acc. Chem. Res. 2020, 53, 2636–2647. [Google Scholar] [CrossRef]
- Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y.; Yao, Y. Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. Chem. Rev. 2020, 120, 6490–6557. [Google Scholar] [CrossRef]
- Muench, S.; Wild, A.; Friebe, C.; Häupler, B.; Janoschka, T.; Schubert, U.S. Polymer-Based Organic Batteries. Chem. Rev. 2016, 116, 9438–9484. [Google Scholar] [CrossRef]
- Song, Z.; Zhou, H. Towards Sustainable and Versatile Energy Storage Devices: An Overview of Organic Electrode Materials. Energy Environ. Sci. 2013, 6, 2280–2301. [Google Scholar] [CrossRef]
- Zhu, L.M.; Lei, A.W.; Cao, Y.L.; Ai, X.P.; Yang, H.X. An All-Organic Rechargeable Battery Using Bipolar Polyparaphenylene as a Redox-Active Cathode and Anode. Chem. Commun. 2012, 49, 567–569. [Google Scholar] [CrossRef]
- Min, D.J.; Lee, K.; Park, S.Y.; Kwon, J.E. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries. ChemSusChem 2020, 13, 2303–2311. [Google Scholar] [CrossRef] [PubMed]
- Buyukcakir, O.; Ryu, J.; Joo, S.H.; Kang, J.; Yuksel, R.; Lee, J.; Jiang, Y.; Choi, S.; Lee, H.S.; Kwak, S.K.; et al. Lithium Accommodation in a Redox-Active Covalent Triazine Framework for High Areal Capacity and Fast-Charging Lithium-Ion Batteries. Adv. Funct. Mater. 2020, 30, 2003761. [Google Scholar] [CrossRef]
- Aher, J.; Graefenstein, A.; Deshmukh, G.; Subramani, K.; Krueger, B.; Haensch, M.; Schwenzel, J.; Krishnamoorthy, K.; Wittstock, G. Effect of Aromatic Rings and Substituent on the Performance of Lithium Batteries with Rylene Imide Cathodes. ChemElectroChem 2020, 7, 1160–1165. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, Y.; Qu, Q.; Zheng, X.; Zhang, J.; Liu, G.; Battaglia, V.S.; Zheng, H. Ultrahigh-Capacity Organic Anode with High-Rate Capability and Long Cycle Life for Lithium-Ion Batteries. ACS Energy Lett. 2017, 2, 2140–2148. [Google Scholar] [CrossRef]
- Lee, M.; Hong, J.; Lee, B.; Ku, K.; Lee, S.; Park, C.B.; Kang, K. Multi-Electron Redox Phenazine for Ready-to-Charge Organic Batteries. Green Chem. 2017, 19, 2980–2985. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Park, M.J. Long-Life, High-Rate Lithium-Organic Batteries Based on Naphthoquinone Derivatives. Chem. Mater. 2016, 28, 2408–2416. [Google Scholar] [CrossRef]
- Häupler, B.; Wild, A.; Schubert, U.S.; Häupler, B.; Wild, A.; Schubert, U.S. Carbonyls: Powerful Organic Materials for Secondary Batteries. Adv. Energy Mater. 2015, 5, 1402034. [Google Scholar] [CrossRef]
- Han, X.; Qing, G.; Sun, J.; Sun, T. How Many Lithium Ions Can Be Inserted onto Fused C6 Aromatic Ring Systems? Angew. Chem. Int. Ed. 2012, 51, 5147–5151. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, S.; Zhou, G.; Hou, Q.; Luo, S.; Wang, Y.; Shi, G.; Zeng, R. 3-Anthraquinone Substituted Polythiophene as Anode Material for Lithium Ion Battery. J. Electroanal. Chem. 2021, 895, 115495. [Google Scholar] [CrossRef]
- Wang, H.; Yao, C.-J.; Nie, H.-J.; Wang, K.-Z.; Zhong, Y.-W.; Chen, P.; Mei, S.; Zhang, Q. Recent Progress in Carbonyl-Based Organic Polymers as Promising Electrode Materials for Lithium-Ion Batteries (LIBs). J. Mater. Chem. A Mater. 2020, 8, 11906–11922. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, W.; Guo, R.; Qu, Q.; Zheng, H.; Zhang, J.; Huang, Y. A High-Capacity Organic Anode with Self-Assembled Morphological Transformation for Green Lithium-Ion Batteries. J. Mater. Chem. A Mater. 2019, 7, 22621–22630. [Google Scholar] [CrossRef]
- Gu, T.; Zhou, M.; Huang, B.; Cao, S.; Wang, J.; Tang, Y.; Wang, K.; Cheng, S.; Jiang, K. Advanced Li-Organic Batteries with Super-High Capacity and Long Cycle Life via Multiple Redox Reactions. Chem. Eng. J. 2019, 373, 501–507. [Google Scholar] [CrossRef]
- Li, G.; Zhang, B.; Wang, J.; Zhao, H.; Ma, W.; Xu, L.; Zhang, W.; Zhou, K.; Du, Y.; He, G. Electrochromic Poly(Chalcogenoviologen)s as Anode Materials for High-Performance Organic Radical Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2019, 58, 8468–8473. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, P.; Zhou, Y.; Nie, W.; Xu, Y. New Family of Organic Anode without Aromatics for Energy Storage. Electrochim. Acta 2019, 318, 262–271. [Google Scholar] [CrossRef]
- Wei, W.; Chang, G.; Xu, Y.; Yang, L. An Indole-Based Conjugated Microporous Polymer: A New and Stable Lithium Storage Anode with High Capacity and Long Life Induced by Cation–π Interactions and a N-Rich Aromatic Structure. J. Mater. Chem. A Mater. 2018, 6, 18794–18798. [Google Scholar] [CrossRef]
- Banerjee, A.; Araujo, R.B.; Sjödin, M.; Ahuja, R. Identifying the Tuning Key of Disproportionation Redox Reaction in Terephthalate: A Li-Based Anode for Sustainable Organic Batteries. Nano Energy 2018, 47, 301–308. [Google Scholar] [CrossRef]
- Maiti, S.; Pramanik, A.; Dhawa, T.; Mahanty, S. Redox-Active Organic Molecular Salt of 1,2,4-Benzenetricarboxylic Acid as Lithium-Ion Battery Anode. Mater. Lett. 2017, 209, 613–617. [Google Scholar] [CrossRef]
- Deng, Q.; Xue, J.; Zou, W.; Wang, L.; Zhou, A.; Li, J. The Electrochemical Behaviors of Li2C8H4O6 and Its Corresponding Organic Acid C8H6O6 as Anodes for Li-Ion Batteries. J. Electroanal. Chem. 2016, 761, 74–79. [Google Scholar] [CrossRef]
- Janoschka, T.; Hager, M.D.; Schubert, U.S. Powering up the Future: Radical Polymers for Battery Applications. Adv. Mater. 2012, 24, 6397–6409. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Ding, G.; Xie, L.; Cao, X.; Liu, J.; Lei, X.; Ma, J. Conjugated Carbonyl Compounds as High-Performance Cathode Materials for Rechargeable Batteries. Chem. Mater. 2019, 31, 8582–8612. [Google Scholar] [CrossRef]
- Xie, J.; Gu, P.; Zhang, Q. Nanostructured Conjugated Polymers: Toward High-Performance Organic Electrodes for Rechargeable Batteries. ACS Energy Lett. 2017, 2, 1985–1996. [Google Scholar] [CrossRef]
- Ogihara, N.; Yasuda, T.; Kishida, Y.; Ohsuna, T.; Miyamoto, K.; Ohba, N. Organic Dicarboxylate Negative Electrode Materials with Remarkably Small Strain for High-Voltage Bipolar Batteries. Angew. Chem. Int. Ed. 2014, 53, 11467–11472. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.R.; Cao, Y.L.; Ai, X.P.; Yang, H.X. Reversible Li and Na Storage Behaviors of Perylenetetracarboxylates as Organic Anodes for Li- and Na-Ion Batteries. J. Electroanal. Chem. 2013, 688, 93–97. [Google Scholar] [CrossRef]
- Renault, S.; Mihali, V.A.; Brandell, D. Optimizing the Electrochemical Performance of Water-Soluble Organic Li–Ion Battery Electrodes. Electrochem. Commun. 2013, 34, 174–176. [Google Scholar] [CrossRef]
- Renault, S.; Geng, J.; Dolhem, F.; Poizot, P. Evaluation of Polyketones with N-Cyclic Structure as Electrode Material for Electrochemical Energy Storage: Case of Pyromellitic Diimide Dilithium Salt. Chem. Commun. 2011, 47, 2414–2416. [Google Scholar] [CrossRef] [PubMed]
- Senoh, H.; Yao, M.; Sakaebe, H.; Yasuda, K.; Siroma, Z. A Two-Compartment Cell for Using Soluble Benzoquinone Derivatives as Active Materials in Lithium Secondary Batteries. Electrochim. Acta 2011, 56, 10145–10150. [Google Scholar] [CrossRef]
- Nokami, T.; Matsuo, T.; Inatomi, Y.; Hojo, N.; Tsukagoshi, T.; Yoshizawa, H.; Shimizu, A.; Kuramoto, H.; Komae, K.; Tsuyama, H.; et al. Polymer-Bound Pyrene-4,5,9,10-Tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity. J. Am. Chem. Soc. 2012, 134, 19694–19700. [Google Scholar] [CrossRef]
- Walker, W.; Grugeon, S.; Mentre, O.; Laruelle, S.; Tarascon, J.M.; Wudl, F. Ethoxycarbonyl-Based Organic Electrode for Li-Batteries. J. Am. Chem. Soc. 2010, 132, 6517–6523. [Google Scholar] [CrossRef]
- Han, X.; Chang, C.; Yuan, L.; Sun, T.; Sun, J. Aromatic Carbonyl Derivative Polymers as High-Performance Li-Ion Storage Materials. Adv. Mater. 2007, 19, 1616–1621. [Google Scholar] [CrossRef]
- Zeng, R.H.; Li, X.P.; Qiu, Y.C.; Li, W.S.; Yi, J.; Lu, D.S.; Tan, C.L.; Xu, M.Q. Synthesis and Properties of a Lithium-Organic Coordination Compound as Lithium-Inserted Material for Lithium Ion Batteries. Electrochem. Commun. 2010, 9, 1253–1256. [Google Scholar] [CrossRef]
- Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J.M. Conjugated Dicarboxylate Anodes for Li-Ion Batteries. Nat. Mater. 2009, 8, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.; Grugeon, S.; Vezin, H.; Laruelle, S.; Armand, M.; Tarascon, J.M.; Wudl, F. The Effect of Length and Cis/Trans Relationship of Conjugated Pathway on Secondary Battery Performance in Organolithium Electrodes. Electrochem. Commun. 2010, 12, 1348–1351. [Google Scholar] [CrossRef]
- Wang, L.; Mou, C.; Wu, B.; Xue, J.; Li, J. Alkaline Earth Metal Terephthalates MC8H4O4 (M=Ca, Sr, Ba) as Anodes for Lithium Ion Batteries. Electrochim. Acta 2016, 196, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Liao, S.; Lin, H.; Yin, Y.; Liu, Y.; Meng, H.; Min, Y. A Facile Strategy for Synthesizing Organic Tannic Metal Salts as Advanced Energy Storage Anodes. ChemElectroChem 2021, 8, 2686–2692. [Google Scholar] [CrossRef]
- Xiao, F.; Liu, P.; Li, J.; Zhang, Y.; Liu, Y.; Xu, M. A Small Molecule Organic Compound Applied as an Advanced Anode Material for Lithium-Ion Batteries. Chem. Commun. 2022, 58, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Ji, X.; Hou, S.; Eidson, N.; Fan, X.; Liang, Y.; Deng, T.; Jiang, J.; Wang, C. Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li-Ion Batteries. Adv. Mater. 2018, 30, 1706498. [Google Scholar] [CrossRef] [PubMed]
- Lakraychi, A.E.; Dolhem, F.; Djedaïni-Pilard, F.; Becuwe, M. Substituent Effect on Redox Potential of Terephthalate-Based Electrode Materials for Lithium Batteries. Electrochem. Commun. 2018, 93, 71–75. [Google Scholar] [CrossRef]
- Nisula, M.; Karppinen, M. Atomic/Molecular Layer Deposition of Lithium Terephthalate Thin Films as High Rate Capability Li-Ion Battery Anodes. Nano Lett. 2016, 16, 1276–1281. [Google Scholar] [CrossRef] [Green Version]
- Fédèle, L.; Sauvage, F.; Bécuwe, M. Hyper-Conjugated Lithium Carboxylate Based on a Perylene Unit for High-Rate Organic Lithium-Ion Batteries. J. Mater. Chem. A Mater. 2014, 2, 18225–18228. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, Q.; Zhou, A.; Liu, X.; Li, J. Porous Li2C8H4O4 Coated with N-Doped Carbon by Using CVD as an Anode Material for Li-Ion Batteries. J. Mater. Chem. A Mater. 2014, 2, 5696–5702. [Google Scholar] [CrossRef]
- Walker, W.; Grugeon, S.; Vezin, H.; Laruelle, S.; Armand, M.; Wudl, F.; Tarascon, J.M. Electrochemical Characterization of Lithium 4,4′-Tolane-Dicarboxylate for Use as a Negative Electrode in Li-Ion Batteries. J. Mater. Chem. 2011, 21, 1615–1620. [Google Scholar] [CrossRef]
- Diercks, C.S.; Yaghi, O.M. The Atom, the Molecule, and the Covalent Organic Framework. Science 2017, 355, eaal1585. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Wang, P.; Jiang, D. Covalent Organic Frameworks: A Materials Platform for Structural and Functional Designs. Nat. Rev. Mater. 2016, 1, 16068. [Google Scholar] [CrossRef]
- Beuerle, F.; Gole, B. Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds. Angew. Chem. Int. Ed. 2018, 57, 4850–4878. [Google Scholar] [CrossRef]
- Amin, K.; Mao, L.; Wei, Z. Recent Progress in Polymeric Carbonyl-Based Electrode Materials for Lithium and Sodium Ion Batteries. Macromol. Rapid Commun. 2019, 40, 1800565. [Google Scholar] [CrossRef]
- Molina, A.; Patil, N.; Ventosa, E.; Liras, M.; Palma, J.; Marcilla, R. New Anthraquinone-Based Conjugated Microporous Polymer Cathode with Ultrahigh Specific Surface Area for High-Performance Lithium-Ion Batteries. Adv. Funct. Mater. 2020, 30, 1908074. [Google Scholar] [CrossRef]
- Yu, Q.; Xue, Z.; Li, M.; Qiu, P.; Li, C.; Wang, S.; Yu, J.; Nara, H.; Na, J.; Yamauchi, Y. Electrochemical Activity of Nitrogen-Containing Groups in Organic Electrode Materials and Related Improvement Strategies. Adv. Energy Mater. 2021, 11, 2002523. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Han, L.; Zhang, Z.; Xue, Z.; Gao, J.; Li, Y.; Huang, C.; Yi, Y.; Liu, H.; et al. High Conductive Two-Dimensional Covalent Organic Framework for Lithium Storage with Large Capacity. ACS Appl. Mater. Interfaces 2016, 8, 5366–5375. [Google Scholar] [CrossRef]
- Bai, L.; Gao, Q.; Zhao, Y. Two Fully Conjugated Covalent Organic Frameworks as Anode Materials for Lithium Ion Batteries. J. Mater. Chem. A Mater. 2016, 4, 14106–14110. [Google Scholar] [CrossRef]
- Lin, Z.-Q.; Xie, J.; Zhang, B.-W.; Li, J.-W.; Weng, J.; Song, R.-B.; Huang, X.; Zhang, H.; Li, H.; Liu, Y.; et al. Solution-Processed Nitrogen-Rich Graphene-like Holey Conjugated Polymer for Efficient Lithium Ion Storage. Nano Energy 2017, 41, 117–127. [Google Scholar] [CrossRef]
- Lei, Z.; Yang, Q.; Xu, Y.; Guo, S.; Sun, W.; Liu, H.; Lv, L.P.; Zhang, Y.; Wang, Y. Boosting Lithium Storage in Covalent Organic Framework via Activation of 14-Electron Redox Chemistry. Nat. Commun. 2018, 9, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Z.; Chen, X.; Sun, W.; Zhang, Y.; Wang, Y.; Lei, Z.D.; Chen, X.D.; Sun, W.W.; Wang, Y.; Zhang, Y. Exfoliated Triazine-Based Covalent Organic Nanosheets with Multielectron Redox for High-Performance Lithium Organic Batteries. Adv. Energy Mater. 2019, 9, 1801010. [Google Scholar] [CrossRef]
- Wu, M.; Zhao, Y.; Zhang, H.; Zhu, J.; Ma, Y.; Li, C.; Zhang, Y.; Chen, Y. A 2D Covalent Organic Framework with Ultra-Large Interlayer Distance as High-Rate Anode Material for Lithium-Ion Batteries. Nano Res. 2021, 15, 9779–9784. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Q.; Shao, P.; Han, Y.; Gao, X.; Ma, L.; Yuan, S.; Ma, X.; Zhou, J.; Feng, X.; et al. Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries. J. Am. Chem. Soc. 2017, 139, 4258–4261. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.H.; Yao, Z.Q.; Wu, D.; Zhang, Y.H.; Zhou, Z.; Bu, X.H. Structure-Modulated Crystalline Covalent Organic Frameworks as High-Rate Cathodes for Li-Ion Batteries. J. Mater. Chem. A Mater. 2016, 4, 18621–18627. [Google Scholar] [CrossRef]
- Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R.; Jiang, D. Electrochemically Active, Crystalline, Mesoporous Covalent Organic Frameworks on Carbon Nanotubes for Synergistic Lithium-Ion Battery Energy Storage. Sci. Rep. 2015, 5, 8225. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cheng, F.; Zhang, S.; Chen, J. Shape-Controlled Synthesis and Lithium-Storage Study of Metal-Organic Frameworks Zn4O(1,3,5-Benzenetribenzoate)2. J. Power Sources 2006, 160, 542–547. [Google Scholar] [CrossRef]
- Li, C.; Chen, T.; Xu, W.; Lou, X.; Pan, L.; Chen, Q.; Hu, B. Mesoporous Nanostructured Co3O4 Derived from MOF Template: A High-Performance Anode Material for Lithium-Ion Batteries. J. Mater. Chem. A Mater. 2015, 3, 5585–5591. [Google Scholar] [CrossRef]
- Wu, R.; Qian, X.; Yu, F.; Liu, H.; Zhou, K.; Wei, J.; Huang, Y. MOF-Templated Formation of Porous CuO Hollow Octahedra for Lithium-Ion Battery Anode Materials. J. Mater. Chem. A Mater. 2013, 1, 11126–11129. [Google Scholar] [CrossRef]
- Yang, S.J.; Nam, S.; Kim, T.; Im, J.H.; Jung, H.; Kang, J.H.; Wi, S.; Park, B.; Park, C.R. Preparation and Exceptional Lithium Anodic Performance of Porous Carbon-Coated ZnO Quantum Dots Derived from a Metal-Organic Framework. J. Am. Chem. Soc. 2013, 135, 7394–7397. [Google Scholar] [CrossRef]
- Han, Y.; Qi, P.; Li, S.; Feng, X.; Zhou, J.; Li, H.; Su, S.; Li, X.; Wang, B. A Novel Anode Material Derived from Organic-Coated ZIF-8 Nanocomposites with High Performance in Lithium Ion Batteries. Chem. Commun. 2014, 50, 8057–8060. [Google Scholar] [CrossRef] [PubMed]
- Serre, C.; Millange, F.; Surblé, S.; Férey, G. A Route to the Synthesis of Trivalent Transition-Metal Porous Carboxylates with Trimeric Secondary Building Units. Angew. Chem. Int. Ed. 2004, 43, 6285–6289. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Qian, X.; Rui, X.; Liu, H.; Yadian, B.; Zhou, K.; Wei, J.; Yan, Q.; Feng, X.Q.; Long, Y.; et al. Zeolitic Imidazolate Framework 67-Derived High Symmetric Porous Co3O4 Hollow Dodecahedra with Highly Enhanced Lithium Storage Capability. Small 2014, 10, 1932–1938. [Google Scholar] [CrossRef]
- Song, H.; Shen, L.; Wang, J.; Wang, C. Reversible Lithiation–Delithiation Chemistry in Cobalt Based Metal Organic Framework Nanowire Electrode Engineering for Advanced Lithium-Ion Batteries. J. Mater. Chem. A Mater. 2016, 4, 15411–15419. [Google Scholar] [CrossRef]
- Song, H.; Shen, L.; Wang, J.; Wang, C. Phase Segregation and Self-Nano-Crystallization Induced High Performance Li-Storage in Metal-Organic Framework Bulks for Advanced Lithium Ion Batteries. Nano Energy 2017, 34, 47–57. [Google Scholar] [CrossRef]
- Shen, L.; Song, H.; Wang, C. Metal-Organic Frameworks Triggered High-Efficiency Li Storage in Fe-Based Polyhedral Nanorods for Lithium-Ion Batteries. Electrochim. Acta 2017, 235, 595–603. [Google Scholar] [CrossRef]
- Sharma, N.; Szunerits, S.; Boukherroub, R.; Ye, R.; Melinte, S.; Thotiyl, M.O.; Ogale, S. Dual-Ligand Fe-Metal Organic Framework Based Robust High Capacity Li Ion Battery Anode and Its Use in a Flexible Battery Format for Electro-Thermal Heating. ACS Appl. Energy Mater. 2019, 2, 4450–4457. [Google Scholar] [CrossRef]
- Guo, L.; Sun, J.; Zhang, W.; Hou, L.; Liang, L.; Liu, Y.; Yuan, C. Bottom-Up Fabrication of 1D Cu-Based Conductive Metal–Organic Framework Nanowires as a High-Rate Anode towards Efficient Lithium Storage. ChemSusChem 2019, 12, 5051–5058. [Google Scholar] [CrossRef]
- Weng, Y.G.; Yin, W.Y.; Jiang, M.; Hou, J.L.; Shao, J.; Zhu, Q.Y.; Dai, J. Tetrathiafulvalene-Based Metal-Organic Framework as a High-Performance Anode for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 52615–52623. [Google Scholar] [CrossRef]
- Wei, R.; Dong, Y.; Zhang, Y.; Zhang, R.; Al-Tahan, M.A.; Zhang, J. In-Situ Self-Assembled Hollow Urchins F-Co-MOF on rGO as Advanced Anodes for Lithium-Ion and Sodium-Ion Batteries. J. Colloid Interface Sci. 2021, 582, 236–245. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, Y.; Yang, J.; Wang, H.; Jia, M.; Tang, J. Cross-Linking Tin-Based Metal-Organic Frameworks with Encapsulated Silicon Nanoparticles: High-Performance Anodes for Lithium-Ion Batteries. ChemElectroChem 2019, 6, 2056–2063. [Google Scholar] [CrossRef]
- Nazir, A.; Le, H.T.T.; Kasbe, A.; Park, C.J. Si Nanoparticles Confined within a Conductive 2D Porous Cu-Based Metal–Organic Framework (Cu3(HITP)2) as Potential Anodes for High-Capacity Li-Ion Batteries. Chem. Eng. J. 2021, 405, 126963. [Google Scholar] [CrossRef]
- Yu, L.; Liu, J.; Xu, X.; Zhang, L.; Hu, R.; Liu, J.; Yang, L.; Zhu, M. Metal-Organic Framework-Derived NiSb Alloy Embedded in Carbon Hollow Spheres as Superior Lithium-Ion Battery Anodes. ACS Appl. Mater. Interfaces 2017, 9, 2516–2525. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, L.; Zhang, W.; Ding, G.; Yang, G.; Xie, L.; Cao, X. Revealing the Unique Process of Alloying Reaction in Ni-Co-Sb/C Nanosphere Anode for High-Performance Lithium Storage. J. Colloid Interface Sci. 2021, 586, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.; Bok, T.; Kim, C.; Na, Y.; Park, S.; Kim, K.S. Mesoporous Silicon Hollow Nanocubes Derived from Metal-Organic Framework Template for Advanced Lithium-Ion Battery Anode. ACS Nano 2017, 11, 4808–4815. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Huang, F.; Li, S.; Shen, Y.; Xie, A. Novel Porous Starfish-like Co3O4@nitrogen-Doped Carbon as an Advanced Anode for Lithium-Ion Batteries. Nano Res. 2017, 10, 3457–3467. [Google Scholar] [CrossRef]
- Han, Y.; Li, J.; Zhang, T.; Qi, P.; Li, S.; Gao, X.; Zhou, J.; Feng, X.; Wang, B. Zinc/Nickel-Doped Hollow Core–Shell Co3O4 Derived from a Metal–Organic Framework with High Capacity, Stability, and Rate Performance in Lithium/Sodium-Ion Batteries. Chem.—Eur. J. 2018, 24, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Fei, B.; Chen, C.; Hu, C.; Cai, D.; Wang, Q.; Zhan, H. Engineering One-Dimensional Bunched Ni-MoO2@Co-CoO-NC Composite for Enhanced Lithium and Sodium Storage Performance. ACS Appl. Energy Mater. 2020, 3, 9018–9027. [Google Scholar] [CrossRef]
- Ye, H.; Jiang, F.; Li, H.; Xu, Z.; Yin, J.; Zhu, H. Facile Synthesis of Conjugated Polymeric Schiff Base as Negative Electrodes for Lithium Ion Batteries. Electrochim. Acta 2017, 253, 319–323. [Google Scholar] [CrossRef]
- Man, Z.; Li, P.; Zhou, D.; Zang, R.; Wang, S.; Li, P.; Liu, S.; Li, X.; Wu, Y.; Liang, X.; et al. High-Performance Lithium–Organic Batteries by Achieving 16 Lithium Storage in Poly(Imine-Anthraquinone). J. Mater. Chem. A Mater. 2019, 7, 2368–2375. [Google Scholar] [CrossRef]
- Poizot, P.; Yao, Y.; Chen, J.; Schubert, U.S. Preface to the Special Issue of ChemSusChem on Organic Batteries. ChemSusChem 2020, 13, 2107–2109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Niu, Y.; Wang, M.Q.; Yang, J.; Lu, S.; Han, J.; Bao, S.J.; Xu, M. Exploration of a Calcium-Organic Framework as an Anode Material for Sodium-Ion Batteries. Chem. Commun. 2016, 52, 9969–9971. [Google Scholar] [CrossRef]
- Zhang, K.; Guo, C.; Zhao, Q.; Niu, Z.; Chen, J.; Zhang, K.; Guo, C.; Zhao, Q.; Niu, Z.; Chen, J. High-Performance Organic Lithium Batteries with an Ether-Based Electrolyte and 9,10-Anthraquinone (AQ)/CMK-3 Cathode. Adv. Sci. 2015, 2, 1500018. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, L.; Zhang, K.; Zhu, Z.; Tao, Z.; Chen, J. Organic Li4C8H2O6 Nanosheets for Lithium-Ion Batteries. Nano Lett. 2013, 13, 4404–4409. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yin, Y.-J.; Hei, J.-P.; Wan, X.-J.; Li, M.-L.; Cui, Y. Molecular Engineering of Aromatic Imides for Organic Secondary Batteries. Small 2021, 17, 2005752. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, X.B.; Huang, J.Q.; Kaskel, S.; Chou, S.; Park, H.S.; Zhang, Q. Alloy Anodes for Rechargeable Alkali-Metal Batteries: Progress and Challenge. ACS Mater. Lett. 2019, 1, 217–229. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, Q.; Xie, J.; Zhang, Q. Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal-Ion Rechargeable Batteries with Organic Materials as Promising Electrodes. Small 2019, 15, 1805061. [Google Scholar] [CrossRef]
- Lee, M.; Hong, J.; Kim, H.; Lim, H.D.; Cho, S.B.; Kang, K.; Park, C.B. Organic Nanohybrids for Fast and Sustainable Energy Storage. Adv. Mater. 2014, 26, 2558–2565. [Google Scholar] [CrossRef]
- Hu, P.; Wang, H.; Yang, Y.; Yang, J.; Lin, J.; Guo, L. Renewable-Biomolecule-Based Full Lithium-Ion Batteries. Adv. Mater. 2016, 28, 3486–3492. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Z.; Chen, J. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries. Adv. Mater. 2017, 29, 1607007. [Google Scholar] [CrossRef]
- Chen, H.; Armand, M.; Demailly, G.; Dolhem, F.; Poizot, P.; Tarascon, J.M. From Biomass to a Renewable LiXC6O6 Organic Electrode for Sustainable Li-Ion Batteries. ChemSusChem 2008, 1, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Armand, M.; Courty, M.; Jiang, M.; Grey, C.P.; Dolhem, F.; Tarascon, J.M.; Poizot, P. Lithium Salt of Tetrahydroxybenzoquinone: Toward the Development of a Sustainable Li-Ion Battery. J. Am. Chem. Soc. 2009, 131, 8984–8988. [Google Scholar] [CrossRef] [PubMed]
Organic Anode Material | Current Density/Specific Capacity (C or mAg−1/mAhg−1) | Structural Formula of Organic Active Anode Material | Refs. |
---|---|---|---|
Lithium perylene-3,4,9,10-tetracarboxylate (Li-PTCA) | 24 mAg−1/195 (with 61.5% capacity retention after 50 cycles) 240 mAg−1/200 (with 60% capacity retention after 50 cycles) | [29] | |
Lithium 2,6-bis(ethoxycarbonyl)-3,7-dioxo-3,7-dihydro-s-indacene-1,5-bis(olate) | 0.05C/125 | [68] | |
Lithium trans-trans-muconate | 0.1C/170 (with 73.5% capacity retention after 80 cycles) | [71] | |
Lithium terephthalate | 0.1C/300 (with 78% capacity retention after 50 cycles) | [71] | |
Alkaline earth metal terephthalates | 200 mAg−1/130 | M = Ca, Sr, Ba | [73] |
Lithium tannic acid (LiTA) | 100 mAg−1/133.5 (with 75.3% capacity retention after 100 cycles) | M = Li | [74] |
Copper maleate hydrate (CMH) | 200 mAg−1/404.6 (with 94.7% capacity retention after 250 cycles) | [75] | |
4-Nitrobenzoic acid lithium salt (NBALS) | 0.5C (1C = 155 mAg−1) /153 (with 85.6% capacity retention after 100 cycles) | [76] | |
Dilithium 2,5-dibromoterephthalate (Li2-DBT) | 0.1C/122, after 50 cycles | [77] | |
Dilithium 2,5-dimethoxyterephthalate (Li2-DMoT) | 0.1C/95, after 50 cycles | [77] | |
Dilithium 2,5-diaminoterephthalate (Li2-DAT) | 0.1C/98, after 50 cycles | [77] |
Organic Anode Material | Discharge Capacity or Capacity Retention (mAhg−1 or %)/Current Rate (mAg−1)/after Cycles | Discharge Capacities (mAh/g) with High Current Rate/Current Rate (mA/g) | Refs. |
---|---|---|---|
2D COF based-polyporphyrin (TThPP) film | 381 mAhg−1 or 61.1%/1000/200 | 195/4000 | [88] |
N2-COF | 600 mAhg−1 or 82%/1000/500 | Unspecified | [89] |
N3-COF | 593 mAhg−1 or 81%/1000/500 | Unspecified | [89] |
Free-standing nitrogen-rich graphene-like holey conjugated polymers (NG-HCP nanosheets) | 1015 mAhg−1/100/230 | 237/2500 | [90] |
Bulk covalent organic framework (COF) | 125 mAhg−1/100/300 | Unspecified | [91] |
Two-dimensional covalent organic framework trapped by carbon nanotubes (COF@CNTs composite) | 1536 mAhg−1/100/500 | 217/5C (1C = 1Ag−1) | [91] |
E-CIN-1/CNT | 1005 mAhg−1 or 79.2%/100/250 | 97/5000 | [92] |
E-SNW-1/CNT | 920 mAhg−1 or 62.6%/100/250 | 212/5000 | [92] |
PA-TA | 543 mAhg−1 or %/1000/400 | 207/5000 | [93] |
Organic Anode Material | MOF Template | Cathode Material | Current Density (C or mAg−1)/Specific Capacity (mAhg−1)/after Cycles/Capacity Retention (%) | Refs. |
---|---|---|---|---|
CoCOP | CoCOP | LFP | 1C/69/300/83 | [104] |
Ni-IOHCs | Ni-IOHCs | LFP | 0.1C/140/20/− | [105] |
Fe-MIL-88B | Fe-MIL-88B | LFP | 0.25C/86.8/100/73.7 | [106] |
Fe-MOF | Fe-MOF | LCO | 500 mAg−1/120/1000/− | [107] |
Cu-CAT | Cu-CAT | NCM811 | 200 mAg−1/371/200/− | [108] |
[Zn2(py-TTF-py)2(BDC)2]·2DMF·H2O | (TTFs)-based Zn-MOF | NCM622 | 100 mAg−1/131.9/70/− | [109] |
F-Co-MOF/rGO | F-Co-MOF | LFP | 200 mAg−1/165.2/300/− | [110] |
Si@Sn-MOF | Sn-based MOF | NCM622 | 20 mAg−1/117.7/150/87.8 | [111] |
Si@Cu3(HITP)2 | Cu3(HITP)2 | LCO | 0.1C/1038/50/46 | [112] |
NiSb⊂CHSs | Ni-based MOF | LMO | 200 mAg−1/228.2/100/− | [113] |
Ni-Co-Sb/C | Ni-Co-MOF | LCO | 100 mAg−1/354/100/53.2 | [114] |
m-Si HC-graphite | ZIF-8 | LCO | 0.2C/−/100/72 | [115] |
Co3O4@N-C | Co−MOF | LFP | 100 mAg−1/266/100/95.3 | [116] |
Zn/Ni-Co-Oxide | Zn/Ni-ZIF-67 | NCM532 | 1000 mAg−1/1060/80/70 | [117] |
Ni-MoO2@Co-CoO-NC | ZIF-67 polyhedron integrated with NiMoO4·xH2O nanowires | LFP | 100 mAg−1/130/60/92 | [118] |
Organic Anode Material | Molecular Weight of Monomer | Anode Electrode Composition with the Mass Ratio (%) | Voltages of [Discharge]/[Charge] Platform or Average Voltages (V) | Initial Discharge (Lithiation) and Charge (Delithiation) Capacities (mAh/g)//at a Current Density (mA/g) | Discharge Capacity or Capacity Retention (mAhg−1 or %)/Current Rate (mAg−1)/After Cycles/Voltage Range vs. Li+/Li | Discharge Capacities (mAh/g) with High Current Rate/Current Rate (mA/g) | Refs. |
---|---|---|---|---|---|---|---|
2, 2′-Azobis(2-methylpropionitrile) (AIBN) | 164 | AIBN:super P carbon black:polyvinylidene fluoride = 80:10:10 | [1.7, 1.2]/[-] | 100/-//5 | Unspecified | 30/50 | [54] |
2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AIBA) | 198 | AIBA:super P carbon black:polyvinylidene fluoride = 80:10:10 | [1.7, 1.6, 0.6]/[-] | ~1000/~160//5 | 110 mAhg-1/10/200/0.01–3 V | ~50/50 | [54] |
Free-standing nitrogen-rich graphene-like holey conjugated polymers (NG-HCP nanosheets) | 1405 | NG-HCP nanosheets:carbon nanotubes:poly(vinylidene fluoride) = 70:20:10 | [1.4]/[-] | 2497/1319//20 | 1015 mAhg−1/100/230/0 ~3 V | 237/2500 | [90] |
Bulk covalent organic framework (COF) | 205 | COF:acetylene black:polyvinylidene difluoride = 80:10:10 | Unspecified | 702/163//100 | 125 mAhg−1/100/300/0.005–3.0 V | Unspecified | [91] |
Two-dimensional covalent organic framework trapped by carbon nanotubes (COF@CNTs composite) | 205 | COF@CNTs composite:acetylene black:polyvinylidene difluoride = 80:10:10 | [1.5]/[0.75, 1.6] | 928/383//100 | 1536 mAhg−1/100/500/0.005–3.0 V | 217/5C (1C = 1Ag−1) | [91] |
Polymeric Schiff base (PSB) | 443 | PSB:super P:polytetrafluoroethylene = 85:10:5 | [0.15, 1.1, 2.3]/[0.3, 1.0, 3.2] | 315/97//10 | 50.8%/10/More than 100/0.01–3.5 V | 40.3/80 | [119] |
Poly(imine-anthraquinone) (PIAQ) | 366 | PIAQ:Ketjen black:Carboxymethylcellulose = 70:20:10 | [1.0, 0.1]/[~1.3, ~0.3] | 1231/1130//20 | 89.1%/200/More than 100/0.01–3.5 V | 259/2000 | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlovskii, A.A.; Pushnitsa, K.; Kosenko, A.; Novikov, P.; Popovich, A.A. Organic Anode Materials for Lithium-Ion Batteries: Recent Progress and Challenges. Materials 2023, 16, 177. https://doi.org/10.3390/ma16010177
Pavlovskii AA, Pushnitsa K, Kosenko A, Novikov P, Popovich AA. Organic Anode Materials for Lithium-Ion Batteries: Recent Progress and Challenges. Materials. 2023; 16(1):177. https://doi.org/10.3390/ma16010177
Chicago/Turabian StylePavlovskii, Alexander A., Konstantin Pushnitsa, Alexandra Kosenko, Pavel Novikov, and Anatoliy A. Popovich. 2023. "Organic Anode Materials for Lithium-Ion Batteries: Recent Progress and Challenges" Materials 16, no. 1: 177. https://doi.org/10.3390/ma16010177
APA StylePavlovskii, A. A., Pushnitsa, K., Kosenko, A., Novikov, P., & Popovich, A. A. (2023). Organic Anode Materials for Lithium-Ion Batteries: Recent Progress and Challenges. Materials, 16(1), 177. https://doi.org/10.3390/ma16010177