UV-A,B,C Emitting Persistent Luminescent Materials
Abstract
:1. Introduction
2. Crucial Parameters for PersL Materials
- Trap depth: The trap (defect) depth within the host lattice is the first and foremost important parameter for a good PersL material. When the trap depth energies are between 0.5–0.6 eV, the material can be effectively charged (trapping) and discharged (detrapping) at room temperature. In fact, instead of intentional defects (0.5–0.6 eV), materials containing unintended defects with trap depth between 1.0–2.0 eV can be utilized for de-trapping under the influence of thermal or optical energy addressed as thermoluminescence (TL) and optically stimulated luminescence (OSL) respectively. The more details on these aspects can be found in Refs. [21,22].
- Minimum light output: PersL is the light output that is observed when an initial excitation is seized. Hence, the two important parameters that prevail after such seizure of excitation energy are: (a) light output, and (b) its duration. Usually in most of the materials, the light intensity decreases by almost 90 % of the initial value in the initial few minutes limiting their commercial aspects. However, a good PersL material is the one in which the duration below which the photopic intensity decreases to an eye perceivable intensity value of 0.32 mcd/m, exists. This minimum threshold value is important for applications too.
- Frequency factor (s): When the charges are detrapped from defects at room temperature, there exists a competition between re-trapping and detrapping processes leading to the delay in phosphorescence. The charges once trapped are released very slowly from traps at room temperature delaying the overall recombination process at the luminescence center. Due to this competition between the trapping–detrapping–retrapping processes, multi-exponential or hyperbolic decay curve is obtained. The frequency factor (s) is an important parameter and its value depends upon the competition between these different processes. The typical value of ‘s’ is between 10–10 s [21]. However, in literature, a value of 10 s is used, which underestimates the overall phenomenon leading to wrong interpretation.
3. PersL Materials: Synthesis
3.1. Conventional Method
3.2. Non-Conventional Methods
3.2.1. Sol-Gel Method
3.2.2. Combustion Method
3.2.3. Hydrothermal Method
3.2.4. Co-Precipitation Method
3.2.5. Pechini and Citrate Gel Method
4. PersL Materials: Wavelength Overview
5. UV-Emitting PersL Materials
Host | Dopant | Emission (nm) | PersL Duration | Application | Reference |
---|---|---|---|---|---|
UV-A Emission | |||||
LiScGeO | Bi | 361 | >12 h | information storage | [77] |
SrLaAlO | Bi | 380 | 60 min | photodynamic therapy | [78] |
LiYGeO | Bi | 350 | 72–300 h | biomedical, catalysis | [75] |
CaBO | Ce | 365 | 15 h | UV Phototherapy | [79] |
SrMgGeO | Pb | 370 | >12 h | anti-counterfeiting | [80] |
LiScGeO | Bi | 365 | 120 h | photodynamic therapy | [81] |
NaLuGeO | Bi | 400 | 63 h | photodynamic therapy | [82] |
SrO | Pb | 390 | >1 h | – | [83] |
CaO | Pb | 360 | >1 h | – | [83] |
MO–AlO–SiO | Ce | 396 | 2 min | photocatalysis | [84] |
SrZrO | undoped | 395 | 100 s | information storage | [85] |
SrZrO | Pr | 300–450 | 10 min | – | [74] |
CdSiO | Bi | 360 | <5 min | photocatalysis | [25] |
CdSiO | Bi | 360 | <10 min | disinfection | [25] |
CdSiO | Gd–Bi | 344 | 24 h | photocatalysis | [86] |
ZnSiO | Ga–Bi | 384, 374 | 4 h | photocatalysis | [87] |
LiLuGeO | Bi–Yb | 350 | 15 h | biophotonics | [88] |
CaAlO | Ce | 400 | >10 h | – | [89] |
UV-B Emission | |||||
CaZnGeO | Bi | 300–600 | >12 h | photocatalysis | [57] |
CYAS | Pr | 266/311 | >12 h | Germ killing | [90] |
LiCaGeO | Pr | 240–330 | 20min | Sterilization | [91] |
MLGB | Bi | 306 | >12 h | multimode imaging | [92] |
(Y,Gd)GaO | Bi | 313 | 24 h | optical tagging | [93] |
MLGO | Bi | 310–350 | 24 h | anticounterfeiting | [94] |
LAGO | Pr | 302 | 60 h | optical tagging | [95] |
(Lu,Y)(Al,Ga)O | Bi | 302–313 | 72 h | data encryption | [63] |
YGG | Bi | 316 | 60 min | – | [96] |
YAG | Bi | 303 | 60 min | – | [96] |
BLAGSO | Pr | 301 | 3 h | photocatalysis | [97] |
SYSO | Gd | 299 | 12 h | dermatology therapy | [98] |
UV-C Emission | |||||
CsNaYF | Pr | 250 | 2 h | sensing/biomedicine | [75] |
LaPO | Pr | 231 | 2 h | optoelectronic materials | [99] |
SYSO | Pr | 266 | 12 h | dermatology therapy | [98] |
YPO | Bi | 240 | 2 h | cancer therapy | [100] |
LuSiO | Pr | 200–280 | 12 h | optical tagging | [37] |
6. Luminescence Mechanisms
6.1. Delocalized Mechanism
6.2. Localized Mechanism
- Step 1: the excitation of the Cr ions.
- Step 2: the excitation is dissociated by the local electric field into an electron and a hole.
- Step 3: The excitation is thus trapped in the vicinity of Cr in the form of a pair of neutral defects, while Cr returns to its A ground state. Electrons and hole can then migrate far from Cr ion, so that this storage mechanism can proceed many times with the same Cr ion.
- Step 4: the reverse reaction (electron–hole release and capture by Cr) is thermally activated followed by recombination or release of photons.
6.3. New Mechanism by Dorenbos
7. Future Direction
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PersL | Persistent Luminescence |
PL | Photoluminescence |
TL | Thermoluminescence |
OSL | Optically Stimulated luminescence |
VRBE | Vacuum referred binding energy |
References
- Arpiarian, N. The Centenary of the Discovery of Luminescent Zinc Sulphide. In Proceedings of the International Conference on Luminescence, Budapest, Hungary; 1966; pp. 903–906. [Google Scholar]
- Leverenz, H.W. An Introduction to Luminescence of Solids; Dover Publications: New York, NY, USA, 1968. [Google Scholar]
- Durant, W. Our Oriental Heritage: The Story of Civilization; MJF Books: New York, NY, USA, 1966. [Google Scholar]
- Yocom, P. Future requirements of display phosphors from an historical perspective. J. Soc. Inf. Disp. 1966, 4, 903–906. [Google Scholar] [CrossRef]
- Harvey, E. A History of Luminescence from the Earliest Times until 1900; J.H. Furst Company: Baltimore, MD, USA, 1957. [Google Scholar]
- Hoogenstraaten, W.; Klasens, H.A. Some Properties of Zinc Sulfide Activated with Copper and Cobalt. J. Electrochem. Soc. 1953, 100, 366. [Google Scholar] [CrossRef]
- Abbruscato, V. Optical and Electrical Properties of SrAl2O4:Eu2+. J. Electrochem. Soc. 1971, 118, 930. [Google Scholar] [CrossRef]
- Matsuzawa, T. A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4:Eu2+,Dy3+. J. Electrochem. Soc. 1996, 143, 2670. [Google Scholar] [CrossRef]
- Takasaki, H.; Tanabe, S.; Hanada, T. Long-Lasting Afterglow Characteristics of Eu, Dy Codoped SrO-Al2O3 Phosphor. J. Ceram. Soc. Jpn. 1996, 104, 322–326. [Google Scholar] [CrossRef] [Green Version]
- Katsumata, T.; Nabae, T.; Sasajima, K.; Komuro, S.; Morikawa, T. Effects of Composition on the Long Phosphorescent SrAl2O4:Eu2+, Dy3+ Phosphor Crystals. J. Electrochem. Soc. 1997, 144, L243. [Google Scholar] [CrossRef]
- Katsumata, T.; Nabae, T.; Sasajima, K.; Matsuzawa, T. Growth and characteristics of long persistent SrAl2O4- and CaAl2O4-based phosphor crystals by a floating zone technique. J. Cryst. Growth 1998, 183, 361–365. [Google Scholar] [CrossRef]
- Hölsä, J.; Jungner, H.; Lastusaari, M.; Niittykoski, J. Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+. J. Alloys Compd. 2001, 326–330, 326–330. [Google Scholar] [CrossRef]
- Van der Heggen, D.; Joos, J.J.; Feng, A.; Fritz, V.; Delgado, T.; Gartmann, N.; Walfort, B.; Rytz, D.; Hagemann, H.; Poelman, D.; et al. Persistent Luminescence in Strontium Aluminate: A Roadmap to a Brighter Future. Adv. Funct. Mater. 2022, 32, 2208809. [Google Scholar] [CrossRef]
- Lin, Y.; Tang, Z.; Zhang, Z. Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor. J. Mater. Sci. Lett. 2001, 20, 1505–1506. [Google Scholar] [CrossRef]
- Xu, J.; Tanabe, S. Persistent luminescence instead of phosphorescence: History, mechanism, and perspective. J. Lumin. 2019, 205, 581–620. [Google Scholar] [CrossRef]
- Yu, F.; Yang, Y.; Su, X.; Mi, C.; Seo, H.J. Novel long persistent luminescence phosphors: Yb2+ codoped MAl2O4 (M = Ba, Sr). Opt. Mater. Express 2015, 5, 585–595. [Google Scholar] [CrossRef]
- le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J.P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 9266–9271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabe, R.; Adachi, C. Organic long persistent luminescence. Nature 2017, 550, 384–387. [Google Scholar] [CrossRef]
- Bessiére, A.; Sharma, S.K.; Basavaraju, N.; Binet, L.; Viana, B.; Bos, A.J.J.; Maldiney, T.; Richard, C.; Scherman, D.; Gourier, D. Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate. Chem. Mater. 2014, 26, 1365–1373. [Google Scholar] [CrossRef]
- Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S.K.; Viana, B.; Dorenbos, P.; Gourier, D.; Richard, C. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 2014, 13, 418–426. [Google Scholar] [CrossRef]
- Furetta, C. Handbook of Thermoluminescence; World Scientific: Singapore, 2003. [Google Scholar] [CrossRef]
- Bøtter-Jensen, L.; McKeever, S.; Wintle, A. Chapter 4—Passive optically stimulated luminescence dosimetry. In Optically Stimulated Luminescence Dosimetry; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar] [CrossRef]
- Blasse, G. New luminescent materials. Chem. Mater. 1989, 1, 294–301. [Google Scholar] [CrossRef]
- Sharma, S.K.; Bessière, A.; Basavaraju, N.; Priolkar, K.R.; Binet, L.; Viana, B.; Gourier, D. Interplay between chromium content and lattice disorder on persistent luminescence of ZnGa2O4:Cr3+ for in vivo imaging. J. Lumin. 2014, 155, 251–256. [Google Scholar] [CrossRef]
- Qu, X.; Cao, L.; Liu, W.; Su, G.; Wang, P.; Schultz, I. Sol–gel synthesis of long-lasting phosphors CdSiO3: Mn2+, RE3+ (RE=Tb, Eu, Nd) and luminescence mechanism research. Mater. Res. Bull. 2012, 47, 1598–1603. [Google Scholar] [CrossRef]
- Gupta, S.; Mohapatra, M.; Kaity, S.; Natarajan, V.; Godbole, S. Structure and site selective luminescence of sol–gel derived Eu:Sr2SiO4. J. Lumin. 2012, 132, 1329–1338. [Google Scholar] [CrossRef]
- Hreniak, D.; Stręk, W.; Mazur, P.; Pazik, R.; Ząbkowska-Wacławek, M. Luminescence properties of Tb3+:Y3Al5O12 nanocrystallites prepared by the sol–gel method. Opt. Mater. 2004, 26, 117–121. [Google Scholar] [CrossRef]
- Głuchowski, P.; Stręk, W.; Lastusaari, M.; Hölsä, J. Optically stimulated persistent luminescence of europium-doped LaAlO3 nanocrystals. Phys. Chem. Chem. Phys. 2015, 17, 17246–17252. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, C.K.; Kim, Y.J. Low temperature synthesis of Lu3Al5-xGaxO12:Ce3+, Cr3+ powders using a sol-gel combustion process and its persistent luminescence properties. Opt. Mater. 2020, 104, 109944. [Google Scholar] [CrossRef]
- Sengar, P.; García-Tapia, K.; Can-Uc, B.; Juárez-Moreno, K.; Contreras-López, O.E.; Hirata, G.A. Simultaneous paramagnetic and persistence-luminescence in GAGG:Ce,Pr nanoparticles synthesized by sol-gel for biomedical applications. J. Appl. Phys. 2019, 126, 083107. [Google Scholar] [CrossRef]
- Freeda, M.; Subash, T. Photoluminescence investigations of Ytterbium doped Calcium Aluminate nanophosphor synthesized by sol-gel technique (CaAl2O4: Yb). Mater. Today Proc. 2020, 24, 2149–2156. [Google Scholar] [CrossRef]
- Homayoni, H.; Sahi, S.; Ma, L.; Zhang, J.; Mohapatra, J.; Liu, P.; Sotelo, A.P.; Macaluso, R.T.; Davis, T.; Chen, W. X-ray excited luminescence and persistent luminescence of Sr2MgSi2O7:Eu2+, Dy3+ and their associations with synthesis conditions. J. Lumin. 2018, 198, 132–137. [Google Scholar] [CrossRef]
- Wei, M.; Feng, S.; Tian, X.; Ji, C.; Huang, Z.; Wen, J.; Liu, X.; Luo, F.; Li, C.; Li, J.; et al. Albumin assisted sol-gel synthesized SrSnO3: Pr3+ red persistent phosphors for temperature sensing. J. Lumin. 2021, 239, 118328. [Google Scholar] [CrossRef]
- Keskin, I.Ç. Radioluminescence results, thermoluminescence analysis and kinetic parameters of Y2O3:Ln3+ (Ln: Dy, Nd, Sm) nanophosphors obtained by sol-gel method. Ceram. Int. 2022, 48, 20579–20590. [Google Scholar] [CrossRef]
- Du, P.; Meng, Q.; Wang, X.; Zhu, Q.; Li, X.; Sun, X.; Li, J.G. Sol-gel processing of Eu3+ doped Li6CaLa2Nb2O12 garnet for efficient and thermally stable red luminescence under near-ultraviolet/blue light excitation. Chem. Eng. J. 2019, 375, 121937. [Google Scholar] [CrossRef]
- Singh, V.; Tiwari, M.K. UV emitting Pb2+ doped Ca2La8(SiO4)6O2 phosphors prepared by sol-gel procedure. Optik 2020, 206, 163600. [Google Scholar] [CrossRef]
- Yan, S.; Liang, Y.; Chen, Y.; Liu, J.; Chen, D.; Pan, Z. Ultraviolet-C persistent luminescence from the Lu2SiO5:Pr3+ persistent phosphor for solar-blind optical tagging. Dalton Trans. 2021, 50, 8457–8466. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Tiwari, M.K. Pb2+ doped diopside CaMgSi2O6: New UV luminescent phosphor. Optik 2020, 202, 163542. [Google Scholar] [CrossRef]
- Van den Eeckhout, K.; Smet, P.F.; Poelman, D. Persistent Luminescence in Eu2+-Doped Compounds: A Review. Materials 2010, 3, 2536–2566. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Zhang, Z.; Han, Z.; Xiao, Y.; Lei, S. SrAlxOy:Eu2+, Dy3+ (x = 4) nanostructures: Structure and morphology transformations and long-lasting phosphorescence properties. CrystEngComm 2011, 13, 3545–3550. [Google Scholar] [CrossRef]
- Li, Y.J.; Wang, M.W.; Zhang, L.D.; Gao, D.; Liu, S.X. Soft chemical synthesis and luminescence properties of red long-lasting phosphors Y2O2S:Sm3+. Int. J. Miner. Metall. Mater. 2013, 20, 972–977. [Google Scholar] [CrossRef]
- Liu, D.; Cui, C.; Huang, P.; Wang, L.; Jiang, G. Luminescent properties of red long-lasting phosphor Y2O2S:Eu3+, M2+ (M=Mg, Ca, Sr, Ba), Ti4+ nanotubes via hydrothermal method. J. Alloys Compd. 2014, 583, 530–534. [Google Scholar] [CrossRef]
- Xu, Y.F.; Ma, D.K.; Guan, M.L.; Chen, X.A.; Pan, Q.Q.; Huang, S.M. Controlled synthesis of single-crystal SrAl2O4:Eu2+,Dy3+ nanosheets with long-lasting phosphorescence. J. Alloys Compd. 2010, 502, 38–42. [Google Scholar] [CrossRef]
- Yu, N.; Liu, F.; Li, X.; Pan, Z. Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+,Dy3+,Er3+ phosphors based on persistent energy transfer. Appl. Phys. Lett. 2009, 95, 231110. [Google Scholar] [CrossRef]
- Pan, W.; Ning, G.; Zhang, X.; Wang, J.; Lin, Y.; Ye, J. Enhanced luminescent properties of long-persistent Sr2MgSi2O7:Eu2+, Dy3+ phosphor prepared by the co-precipitation method. J. Lumin. 2008, 128, 1975–1979. [Google Scholar] [CrossRef]
- Cheng, B.; Liu, H.; Fang, M.; Xiao, Y.; Lei, S.; Zhang, L. Long-persistent phosphorescent SrAl2O4:Eu2+, Dy3+ nanotubes. Chem. Commun. 2009, 944–946. [Google Scholar] [CrossRef]
- Liu, Y.; xiang Liu, S.; wen Wang, M.; jun Li, W.; Zhang, T.; Zhang, X. Synthesis and luminescence properties of Eu3+, Sm3+ doped (YxGd1-x)2O3:Si4+, Mg2+ long-lasting phosphor. Int. J. Miner. Metall. Mater. 2010, 17, 347–352. [Google Scholar] [CrossRef]
- Yao, K.; Wang, M.; Liu, S.; Zhang, L.; Li, W. Effects of Host Doping on Spectral and Long-Lasting Properties of Sm3+-Doped Y2O2S. J. Rare Earths 2006, 24, 524–528. [Google Scholar] [CrossRef]
- Marcilly, C.; Courty, P.; Delmon, B. Preparation of Highly Dispersed Mixed Oxides and Oxide Solid Solutions by Pyrolysis of Amorphous Organic Precursors. J. Am. Ceram. Soc. 1970, 53, 56–57. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, X.; Niu, S.; Sun, G.; Xin, Q. Photoluminescence of YVO4:Tm phosphor prepared by a polymerizable complex method. Solid State Commun. 2004, 132, 527–531. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, X.; Niu, S.; Xin, Q. Synthesis and photoluminescence properties of Eu3+-doped AZrO3 (A=Ca, Sr, Ba) perovskite. J. Alloys Compd. 2008, 459, 103–106. [Google Scholar] [CrossRef]
- Lima, S.; Sigoli, F.; Davolos, M.; Jafelicci, M. Europium(III)-containing zinc oxide from Pechini method. J. Alloys Compd. 2002, 344, 280–284. [Google Scholar] [CrossRef]
- Li, Y.; Gecevicius, M.; Qiu, J. Long persistent phosphors—From fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090–2136. [Google Scholar] [CrossRef]
- Aitasalo, T.; Hassinen, J.; Hölsä, J.; Laamanen, T.; Lastusaari, M.; Malkamäki, M.; Niittykoski, J.; Novák, P. Synchrotron radiation investigations of the Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials. J. Rare Earths 2009, 27, 529–538. [Google Scholar] [CrossRef]
- Sortino, S. Photoactivated nanomaterials for biomedical release applications. J. Mater. Chem. 2012, 22, 301–318. [Google Scholar] [CrossRef]
- Inoue, S.i.; Tamari, N.; Taniguchi, M. 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm. Appl. Phys. Lett. 2017, 110, 141106. [Google Scholar] [CrossRef] [Green Version]
- Dou, X.; Xiang, H.; Wei, P.; Zhang, S.; Ju, G.; Meng, Z.; Chen, L.; Hu, Y.; Li, Y. A novel phosphor CaZnGe2O6:Bi3+ with persistent luminescence and photo-stimulated luminescence. Mater. Res. Bull. 2018, 105, 226–230. [Google Scholar] [CrossRef]
- Juzeniene, A.; Moan, J. Beneficial effects of UV radiation other than via vitamin D production. Dermato-Endocrinology 2012, 4, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hönigsmann, H. Erythema and pigmentation. Photodermatol. Photoimmunol. Photomed. 2002, 18, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Gandini, S.; Autier, P.; Boniol, M. Reviews on sun exposure and artificial light and melanoma. Prog. Biophys. Mol. Biol. 2011, 107, 362–366. [Google Scholar] [CrossRef]
- Matsumura, Y.; Ananthaswamy, H.N. Toxic effects of ultraviolet radiation on the skin. Toxicol. Appl. Pharmacol. 2004, 195, 298–308. [Google Scholar] [CrossRef]
- Doré, J.F.; Chignol, M.C. Tanning salons and skin cancer. Photochem. Photobiol. Sci. 2012, 11, 30–37. [Google Scholar] [CrossRef]
- Wang, C.; Jin, Y.; Zhang, R.; Yuan, L.; Li, Z.; Wu, H.; Chen, L.; Hu, Y. Tunable ultraviolet-B full-spectrum delayed luminescence of bismuth-activated phosphors for high-secure data encryption and decryption. J. Alloys Compd. 2022, 902, 163776. [Google Scholar] [CrossRef]
- Xiong, P.; Peng, M. Recent advances in ultraviolet persistent phosphors. Opt. Mater. X 2019, 2, 100022. [Google Scholar] [CrossRef]
- Sharma, S.K.; Behm, T.; Köhler, T.; Beyer, J.; Gloaguen, R.; Heitmann, J. Library of UV-Visible Absorption Spectra of Rare Earth Orthophosphates, LnPO4 (Ln = La-Lu, except Pm). Crystals 2020, 10, 593. [Google Scholar] [CrossRef]
- Blasse, G.; Grabmaier, B.C. Luminescent Materials; Springer: Berlin, Germany, 1994. [Google Scholar]
- Dorenbos, P.; Andriessen, J.; Van Eijk, C.W. 4fn−15d centroid shift in lanthanides and relation with anion polarizability, covalency, and cation electronegativity. J. Solid State Chem. 2003, 171, 133–136. [Google Scholar] [CrossRef]
- Dorenbos, P. Absolute location of lanthanide energy levels and the performance of phosphors. J. Lumin. 2007, 122–123, 315–317. [Google Scholar] [CrossRef]
- Kodama, N.; Takahashi, T.; Yamaga, M.; Tanii, Y.; Qiu, J.; Hirao, K. Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals. Appl. Phys. Lett. 1999, 75, 1715–1717. [Google Scholar] [CrossRef]
- Kruk, A. Optical and structural properties of arc melted Ce or Pr –doped Y2O3 transparent ceramics. Ceram. Int. 2017, 43, 16909–16914. [Google Scholar] [CrossRef]
- Qiu, J.; Kodama, N.; Yamaga, M.; Miura, K.; Mitsuyu, T.; Hirao, K. Infrared femtosecond laser pulse-induced three-dimensional bright and long-lasting phosphorescence in a Ce3+-doped Ca2Al2SiO7 crystal. Appl. Opt. 1999, 38, 7202–7205. [Google Scholar] [CrossRef] [PubMed]
- Jia, D. Relocalization of Ce3+ 5d electrons from host conduction band. J. Lumin. 2006, 117, 170–178. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y.; Yu, X.; Li, Y.; Gong, Y. Investigation of Ce–Mn Energy Transfer in SrAl2O4:Ce3+,Mn2+. J. Am. Ceram. Soc. 2011, 94, 160–163. [Google Scholar] [CrossRef]
- Jin, Y.; Hu, Y.; Chen, L.; Wang, X.; Ju, G.; Mou, Z. Luminescence Properties of Dual-Emission (UV/Visible) Long Afterglow Phosphor SrZrO3: Pr3+. J. Am. Ceram. Soc. 2013, 96, 3821–3827. [Google Scholar] [CrossRef]
- Shi, H.; An, Z. Ultraviolet afterglow. Nat. Photonics 2019, 13, 74–75. [Google Scholar] [CrossRef]
- Gourier, D.; Bessière, A.; Sharma, S.; Binet, L.; Viana, B.; Basavaraju, N.; Priolkar, K.R. Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate. J. Phys. Chem. Solids 2014, 75, 826–837. [Google Scholar] [CrossRef]
- Zhou, Z.; Xiong, P.; Liu, H.; Peng, M. Ultraviolet-A Persistent Luminescence of a Bi3+-Activated LiScGeO4 Material. Inorg. Chem. 2020, 59, 12920–12927. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.M.; Gan, W.J.; Lou, S.Q.; Zou, R.; Tang, Q.; Wang, C.X.; Jiao, J.; Wang, J. X-ray-activated, UVA persistent luminescent materials based on Bi-doped SrLaAlO4 for deep-Seated photodynamic activation. J. Appl. Phys. 2021, 129, 120901. [Google Scholar] [CrossRef]
- Sharma, S.K.; Bettinelli, M.; Carrasco, I.; Beyer, J.; Gloaguen, R.; Heitmann, J. Dynamics of Charges in Superlong Blacklight-Emitting CaB2O4:Ce3+ Persistent Phosphor. J. Phys. Chem. C 2019, 123, 14639–14646. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, F.; Chen, Y.; Sun, K.; Pan, Z. Long persistent luminescence in the ultraviolet in Pb2+-doped Sr2MgGe2O7 persistent phosphor. Dalton Trans. 2016, 45, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, D.; Wang, W.; Yan, S.; Liu, J.; Liang, Y. Long-lasting ultraviolet-A persistent luminescence and photostimulated persistent luminescence in Bi3+-doped LiScGeO4 phosphor. Inorg. Chem. Front. 2020, 7, 3063–3071. [Google Scholar] [CrossRef]
- Wang, W.; Sun, Z.; He, X.; Wei, Y.; Zou, Z.; Zhang, J.; Wang, Z.; Zhang, Z.; Wang, Y. How to design ultraviolet emitting persistent materials for potential multifunctional applications: A living example of a NaLuGeO4:Bi3+,Eu3+ phosphor. J. Mater. Chem. C 2017, 5, 4310–4318. [Google Scholar] [CrossRef]
- Fu, J. Orange- and Violet-Emitting Long-Lasting Phosphors. J. Am. Ceram. Soc. 2002, 85, 255–257. [Google Scholar] [CrossRef]
- Gutiérrez-Martín, F.; Fernández-Martinez, F.; Díaz, P.; Colón, C.; Alonso-Medina, A. Persistent UV phosphors for application in photo catalysis. J. Alloys Compd. 2010, 501, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, J.; Zheng, G.; Peng, X.; Dai, H. Violet-blue afterglow luminescence properties of non-doped SrZrO3 material. J. Lumin. 2013, 144, 30–33. [Google Scholar] [CrossRef]
- Lai, S.; Yang, Z.; Liao, J.; Qiu, J.; Song, Z.; Yang, Y.; Zhou, D. Investigation of persistent luminescence property of Bi3+, Dy3+ co-doped CdSiO3 phosphor. Mater. Res. Bull. 2014, 60, 714–718. [Google Scholar] [CrossRef]
- Mei, Y.; Xu, H.; Zhang, J.; Ci, Z.; Duan, M.; Peng, S.; Zhang, Z.; Tian, W.; Lu, Y.; Wang, Y. Design and spectral control of a novel ultraviolet emitting long lasting phosphor for assisting TiO2 photocatalysis: Zn2SiO4:Ga3+, Bi3+. J. Alloys Compd. 2015, 622, 908–912. [Google Scholar] [CrossRef]
- Cai, H.; Song, Z.; Liu, Q. Infrared-photostimulable and long-persistent ultraviolet-emitting phosphor LiLuGeO4:Bi3+,Yb3+ for biophotonic applications. Mater. Chem. Front. 2021, 5, 1468–1476. [Google Scholar] [CrossRef]
- Jia, D.; Yen, W.M. Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2O4:Ce3+, A Persistent Phosphor. J. Electrochem. Soc. 2003, 150, H61. [Google Scholar] [CrossRef]
- Wang, X.; Mao, Y. Achieving Ultraviolet C and Ultraviolet B Dual-Band Persistent Luminescence by Manipulating the Garnet Structure. Adv. Opt. Mater. 2022, 10, 2102157. [Google Scholar] [CrossRef]
- Zhou, X.; Qiao, J.; Zhao, Y.; Han, K.; Xia, Z. Multi-responsive deep-ultraviolet emission in praseodymium-doped phosphors for microbial sterilization. Sci. China Mater. 2021, 65, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Peng, S.; Lin, P.; Wang, R.; Zhong, H.; Sun, X.; Song, L.; Shi, J.; Zhang, Y. High-level information encryption based on optical nanomaterials with multi-mode luminescence and dual-mode reading. Inorg. Chem. Front. 2022, 9, 4433–4441. [Google Scholar] [CrossRef]
- Liu, J.; Liang, Y.; Yan, S.; Chen, D.; Miao, S.; Wang, W. Narrowband ultraviolet-B persistent luminescence from (Y,Gd)3Ga5O12:Bi3+ phosphors for optical tagging application. Dalton Trans. 2021, 50, 15413–15421. [Google Scholar] [CrossRef]
- Liu, L.; Shi, J.; Li, Y.; Peng, S.; Zhong, H.; Song, L.; Zhang, Y. Disguise as fluorescent powder: Ultraviolet-B persistent luminescence material without visible light for advanced information encryption and anti-counterfeiting applications. Chem. Eng. J. 2022, 430, 132884. [Google Scholar] [CrossRef]
- Yan, S.; Liang, Y.; Liu, J.; Chen, D.; Miao, S.; Bi, J.; Sun, K. Development of ultraviolet-B long-lived persistent phosphors in Pr3+-doped garnets. J. Mater. Chem. C 2021, 9, 14730–14739. [Google Scholar] [CrossRef]
- Sun, H.; Gao, Q.; Wang, A.; Liu, Y.; jun Wang, X.; Liu, F. Ultraviolet-B persistent luminescence and thermoluminescence of bismuth ion doped garnet phosphors. Opt. Mater. Express 2020, 10, 1296–1302. [Google Scholar] [CrossRef]
- Yuan, W.; Tan, T.; Wu, H.; Pang, R.; Zhang, S.; Jiang, L.; Li, D.; Wu, Z.; Li, C.; Zhang, H. Intense UV long persistent luminescence benefiting from the coexistence of Pr3+/Pr4+ in a praseodymium-doped BaLu2Al2Ga2SiO12 phosphor. J. Mater. Chem. C 2021, 9, 5206–5216. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Kner, P.A.; Pan, Z. Gd3+-activated narrowband ultraviolet-B persistent luminescence through persistent energy transfer. Dalton Trans. 2021, 50, 3499–3505. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Q.; Ma, J.P.; Feng, Z.Y.; Liu, J.D.; Zhao, Q.; Kuroiwa, Y.; Moriyoshi, C.; Ye, B.J.; Zhang, J.Y.; et al. Theory-Guided Defect Tuning through Topochemical Reactions for Accelerated Discovery of UVC Persistent Phosphors. Adv. Opt. Mater. 2020, 8, 1901727. [Google Scholar] [CrossRef]
- Liu, Q.; Feng, Z.Y.; Li, H.; Zhao, Q.; Shirahata, N.; Kuroiwa, Y.; Moriyoshi, C.; Duan, C.K.; Sun, H.T. Non-Rare-Earth UVC Persistent Phosphors Enabled by Bismuth Doping. Adv. Opt. Mater. 2021, 9, 2002065. [Google Scholar] [CrossRef]
- Saadatkia, P.; Varney, C.; Selim, F. Trap Level Measurements in Wide Band Gap Materials by Thermoluminescence. In Luminescence; Thirumalai, J., Ed.; IntechOpen: Rijeka, Rijeka, 2016. [Google Scholar] [CrossRef] [Green Version]
- Aitasalo, T.; Dereń, P.; Hölsä, J.; Jungner, H.; Krupa, J.C.; Lastusaari, M.; Legendziewicz, J.; Niittykoski, J.; Stręk, W. Persistent luminescence phenomena in materials doped with rare earth ions. J. Solid State Chem. 2003, 171, 114–122. [Google Scholar] [CrossRef]
- Dorenbos, P. Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+; Dy3+. Phys. Status Solidi B 2005, 242, R7–R9. [Google Scholar] [CrossRef]
- Clabau, F.; Rocquefelte, X.; Jobic, S.; Deniard, P.; Whangbo, M.H.; Garcia, A.; Le Mercier, T. Mechanism of Phosphorescence Appropriate for the Long-Lasting Phosphors Eu2+-Doped SrAl2O4 with Codopants Dy3+ and B3+. Chem. Mater. 2005, 17, 3904–3912. [Google Scholar] [CrossRef]
- Sharma, S.K. Persistent luminescence: Cerium-doped phosphors. In Phosphors Synthesis and Applications; Jenny Stanford Publishing: Dubai, United Arab Emirates, 2018; p. 49. [Google Scholar]
- Binet, L.; Sharma, S.K.; Gourier, D. Interaction of Cr3+ with valence and conduction bands in the long persistent phosphor ZnGa2O4:Cr3+, studied by ENDOR spectroscopy. J. Phys. Condens. Matter 2016, 28, 385501. [Google Scholar] [CrossRef]
- Nie, W.; Michel-Calendini, F.; Linarès, C.; Boulon, G.; Daul, C. New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4. J. Lumin. 1990, 46, 177–190. [Google Scholar] [CrossRef]
- Mikenda, W.; Preisinger, A. N-lines in the luminescence spectra of Cr3+-doped spinels (II) origins of N-lines. J. Lumin. 1981, 26, 67–83. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, J.; Chen, Z.; Wang, T.; Zheng, S. Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors. J. Lumin. 2010, 130, 1738–1743. [Google Scholar] [CrossRef]
- Dorenbos, P. The hole picture as alternative for the common electron picture to describe hole trapping and luminescence quenching. J. Lumin. 2018, 197, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Dorenbos, P. Modeling the chemical shift of lanthanide 4f electron binding energies. Phys. Rev. B—Condens. Matter Mater. Phys. 2012, 85, 165107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.K.; James, J.; Gupta, S.K.; Hussain, S. UV-A,B,C Emitting Persistent Luminescent Materials. Materials 2023, 16, 236. https://doi.org/10.3390/ma16010236
Sharma SK, James J, Gupta SK, Hussain S. UV-A,B,C Emitting Persistent Luminescent Materials. Materials. 2023; 16(1):236. https://doi.org/10.3390/ma16010236
Chicago/Turabian StyleSharma, Suchinder K., Jinu James, Shailendra Kumar Gupta, and Shamima Hussain. 2023. "UV-A,B,C Emitting Persistent Luminescent Materials" Materials 16, no. 1: 236. https://doi.org/10.3390/ma16010236
APA StyleSharma, S. K., James, J., Gupta, S. K., & Hussain, S. (2023). UV-A,B,C Emitting Persistent Luminescent Materials. Materials, 16(1), 236. https://doi.org/10.3390/ma16010236