Roughness of the Surface of Zirconia Reinforced Lithium Disilicate Ceramic Treated by Different Procedures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Surface Roughness
3.2. XRD Analysis
3.3. EDXRF Analysis
4. Discussion
5. Conclusion
- Among the samples treated with conventional procedures, the surface roughness is highest in the samples treated with sandblasting and silanisation (group E). When comparing the surface roughness of the samples treated with lasers, it is clear from the results obtained that a higher surface roughness was achieved with the Er:YAG laser (group G).
- The surface roughness of lithium disilicate reinforced with zirconia is the highest in samples treated by Er:YAG irradiation and silanisation,
- The analysis of the ceramic surface by means of EDXRF analysis and XRD analysis shows that none of the applied surface treatment procedures change the composition of the surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zarone, F.; Di Mauro, M.I.; Ausiello, P.; Ruggiero, G.; Sorrentino, R. Current Status on Lithium Disilicate and Zirconia: A Narrative Review. BMC Oral Health 2019, 19, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Zheng, X.; Zhao, G.; Zhong, B.; Zhang, X.; Wen, G. Microstructure and Mechanical Properties of Zirconia-Toughened Lithium Disilicate Glass–Ceramic Composites. Mater. Chem. Phys. 2014, 143, 845–852. [Google Scholar] [CrossRef]
- Kaczmarek, K.; Konieczny, B.; Siarkiewicz, P.; Leniart, A.; Lukomska-Szymanska, M.; Skrzypek, S.; Lapinska, B. Surface Characterization of Current Dental Ceramics Using Scanning Electron Microscopic and Atomic Force Microscopic Techniques. Coatings 2022, 12, 1122. [Google Scholar] [CrossRef]
- Zarone, F.; Ruggiero, G.; Leone, R.; Breschi, L.; Leuci, S.; Sorrentino, R. Zirconia-Reinforced Lithium Silicate (ZLS) Mechanical and Biological Properties: A Literature Review. J. Dent. 2021, 109, 103661. [Google Scholar] [CrossRef]
- Rinke, S.; Rödiger, M.; Ziebolz, D.; Schmidt, A.-K. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow. Case Rep. Dent. 2015, 2015, 162178. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-P.; Xiang, Z.-X.; Song, X.-F.; Yin, L. Machinability: Zirconia-Reinforced Lithium Silicate Glass Ceramic versus Lithium Disilicate Glass Ceramic. J. Mech. Behav. Biomed. 2020, 101, 103435. [Google Scholar] [CrossRef] [PubMed]
- Komar, D.; Bago, I.; Negovetić Vranić, D.; Kranjčić, J.; Brkić, B.; Carek, A. Influence of Different Surface Pretreatments of Zirconium Dioxide Reinforced Lithium Disilicate Ceramics on the Shear Bond Strength of Self-Adhesive Resin Cement. Acta Stomatol. Croat. 2021, 55, 264–279. [Google Scholar] [CrossRef] [PubMed]
- Fabian Fonzar, R.; Goracci, C.; Carrabba, M.; Louca, C.; Ferrari, M.; Vichi, A. Influence of Acid Concentration and Etching Time on Composite Cement Adhesion to Lithium-Silicate Glass Ceramics. J. Adhes. Dent. 2020, 22, 175–182. [Google Scholar] [CrossRef]
- Zhang, L.; Hong, D.; Zheng, M.; Yu, H. Is the Bond Strength of Zirconia-Reinforced Lithium Silicate Lower than That of Lithium Disilicate?—A Systematic Review and Meta-Analysis. J. Prosthodont. Res. 2022, 66, 530–537. [Google Scholar] [CrossRef]
- Elsaka, S.E.; Elnaghy, A.M. Mechanical Properties of Zirconia Reinforced Lithium Silicate Glass-Ceramic. Dent. Mater. 2016, 32, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-M.; Jeong, C.-S.; Lee, H.-J.; Bae, J.-M.; Choi, E.-J.; Kim, S.-T.; Park, Y.-B.; Oh, S.-H. A Comparative Study of Additive and Subtractive Manufacturing Techniques for a Zirconia Dental Product: An Analysis of the Manufacturing Accuracy and the Bond Strength of Porcelain to Zirconia. Materials 2022, 15, 5398. [Google Scholar] [CrossRef] [PubMed]
- Saravi, B.; Vollmer, A.; Hartmann, M.; Lang, G.; Kohal, R.-J.; Boeker, M.; Patzelt, S.B.M. Clinical Performance of CAD/CAM All-Ceramic Tooth-Supported Fixed Dental Prostheses: A Systematic Review and Meta-Analysis. Materials 2021, 14, 2672. [Google Scholar] [CrossRef] [PubMed]
- Baršić, G. Ispitivanje Hrapavosti Tehničkih Površina; Teaching Script, Faculty of Mechanical Engineering and Naval Architecture Croatia: Zagreb, Croatia, 2012. [Google Scholar]
- Sevmez, H.; Yilmaz, H. Comparison of the effect of surface conditioning methods on the bond strength of different zirconia reinforced lithium silicate and hybrid ceramics to resin cement. Clin. Exp. Health Sci. 2021, 11, 554. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, B.; Motwani, B.K.; Binalrimal, S.; Radwan, W.; Robaian, A.; Zidane, B.; Al Wadei, M.H.D.; Veeraraghavan, V.P.; Bhandi, S.; et al. The Effect of Different Surface Conditioning Techniques on the Bonding between Resin Cement & Ceramic. Coatings 2022, 12, 399. [Google Scholar] [CrossRef]
- Dalla-Nora, F.; Guilardi, L.F.; Zucuni, C.P.; Valandro, L.F.; Rippe, M.P. Fatigue Behavior of Monolithic Zirconia-Reinforced Lithium Silicate Ceramic Restorations: Effects of Conditionings of the Intaglio Surface and the Resin Cements. Oper. Dent. 2021, 46, 316–326. [Google Scholar] [CrossRef] [PubMed]
- ISO 4287:1997; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. ISO: Geneva, Switzerland, 1997.
- ISO 4288:1996; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture. ISO: Geneva, Switzerland, 1996.
- ISO 3274:1996; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Nominal Characteristics of Contact (Stylus) Instruments. ISO: Geneva, Switzerland, 1996.
- Mehulić, K. Keramički Materijali u Stomatološkoj Protetici; Školska Knjiga: Zagreb, Croatia, 2010. [Google Scholar]
- Mehulić, K. Dentalni Materijali; Medicinska Naklada: Zagreb, Croatia, 2017. [Google Scholar]
- Milardović Ortolan, S. Influence of Substrate Color, Optical Properties and Thickness of Restorative Materials and Luting Agents on the Final Color of Lithium Disilicate Restorations. Ph.D. Thesis, The University of Zagreb School of Dental Medicine, Zagreb, Croatia, 30 May 2014. [Google Scholar]
- Holand, W.; Schweiger, M.; Frank, M.; Rheinberger, V. A Comparison of the Microstructure and Properties of the IPS Empress 2 and the IPS Empress Glass-Ceramics. J. Biomed. Mater. Res. 2000, 53, 297–303. [Google Scholar] [CrossRef]
- Dellabona, A. Fracture Behavior of Lithia Disilicate- and Leucite-Based Ceramics. Dent. Mater. 2004, 20, 956–962. [Google Scholar] [CrossRef]
- Ural, Ç.; KalyoncuoĞlu, E.; Balkaya, V. The Effect of Different Power Outputs of Carbon Dioxide Laser on Bonding between Zirconia Ceramic Surface and Resin Cement. Acta Odontol. Scand. 2012, 70, 541–546. [Google Scholar] [CrossRef]
- Akin, H.; Tugut, F.; Emine Akin, G.; Guney, U.; Mutaf, B. Effect of Er:YAG Laser Application on the Shear Bond Strength and Microleakage between Resin Cements and Y-TZP Ceramics. Lasers Med. Sci. 2012, 27, 333–338. [Google Scholar] [CrossRef]
- Giordano, R.; McLaren, E.A. Ceramics Overview: Classification by Microstructure and Processing Methods. Compend. Contin. Educ. Dent. 2010, 31, 682–684. [Google Scholar]
- Albakry, M.; Guazzato, M.; Swain, M.V. Fracture Toughness and Hardness Evaluation of Three Pressable All-Ceramic Dental Materials. J. Dent. 2003, 31, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Katić, V.; Špalj, S. Testing methods of materials to be used in dental medicine. Med. Flum. 2014, 50, 268–278. [Google Scholar]
- Tian, T.; Tsoi, J.K.-H.; Matinlinna, J.P.; Burrow, M.F. Aspects of Bonding between Resin Luting Cements and Glass Ceramic Materials. Dent. Mater. 2014, 30, e147–e162. [Google Scholar] [CrossRef] [PubMed]
- Addison, O.; Marquis, P.M.; Fleming, G.J.P. Resin Strengthening of Dental Ceramics—The Impact of Surface Texture and Silane. J. Dent. 2007, 35, 416–424. [Google Scholar] [CrossRef]
- Shimada, Y. Micro-Shear Bond Strength of Dual-Cured Resin Cement to Glass Ceramics. Dent. Mater. 2002, 18, 380–388. [Google Scholar] [CrossRef]
- Ustun, O.; Akar, T.; Kirmali, O. A Comparative Study of Laser Irradiation Versus Sandblasting in Improving the Bond Strength of Titanium Abutments. Photobiomodul. Photomed. Laser Surg. 2019, 37, 465–472. [Google Scholar] [CrossRef]
- Thompson, J.Y.; Stoner, B.R.; Piascik, J.R.; Smith, R. Adhesion/Cementation to Zirconia and Other Non-Silicate Ceramics: Where Are We Now? Dent. Mater. 2011, 27, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Filho, A.M.; Vieira, L.C.C.; Araújo, É.; Monteiro Júnior, S. Effect of Different Ceramic Surface Treatments on Resin Microtensile Bond Strength. J. Prosthodont. 2004, 13, 28–35. [Google Scholar] [CrossRef]
- Della Bona, A.; Borba, M.; Benetti, P.; Pecho, O.E.; Alessandretti, R.; Mosele, J.C.; Mores, R.T. Adhesion to Dental Ceramics. Curr. Oral Health Rep. 2014, 1, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Saracoglu, A.; Cura, C.; Cotert, H.S. Effect of Various Surface Treatment Methods on the Bond Strength of the Heat-Pressed Ceramic Samples. J. Oral Rehabil. 2004, 31, 790–797. [Google Scholar] [CrossRef]
- Blatz, M.B.; Sadan, A.; Kern, M. Resin-Ceramic Bonding: A Review of the Literature. J. Prosthet. Dent. 2003, 89, 268–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocca, J.-P.; Fornaini, C.; Brulat-Bouchard, N.; Bassel Seif, S.; Darque-Ceretti, E. CO2 and Nd:YAP Laser Interaction with Lithium Disilicate and Zirconia Dental Ceramics: A Preliminary Study. Opt. Laser Technol. 2014, 57, 216–223. [Google Scholar] [CrossRef]
- El Gamal, A.; Fornaini, C.; Rocca, J.P.; Muhammad, O.H.; Medioni, E.; Cucinotta, A.; Brulat-Bouchard, N. The Effect of CO2 and Nd:YAP Lasers on CAD/CAM Ceramics: SEM, EDS and Thermal Studies. Laser Ther. 2016, 25, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Liu, S.; Song, X.; Zhu, Q.; Zhang, W. Effect of Nd: YAG Laser Irradiation on Surface Properties and Bond Strength of Zirconia Ceramics. Lasers Med. Sci. 2015, 30, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Davari, A.; Abolghasami Mahani, A.; Hakimi, H. Influence of Different Power Outputs of Er:YAG Laser on Shear Bond Strength of a Resin Composite to Feldspathic Porcelain. J. Dent. 2015, 16, 30–36. [Google Scholar]
- Shiu, P.; De Souza-Zaroni, W.C.; Eduardo, C.D.P.; Youssef, M.N. Effect of Feldspathic Ceramic Surface Treatments on Bond Strength to Resin Cement. Photomed. Laser Surg. 2007, 25, 291–296. [Google Scholar] [CrossRef]
- Erdur, E.A.; Basciftci, F.A. Effect of Ti:Sapphire-Femtosecond Laser on the Surface Roughness of Ceramics: TI:Sapphire Laser on Ceramic Surfaces. Lasers Surg. Med. 2015, 47, 833–838. [Google Scholar] [CrossRef]
- Gomes, A.L.; Ramos, J.C.; Santos-del Riego, S.; Montero, J.; Albaladejo, A. Thermocycling Effect on Microshear Bond Strength to Zirconia Ceramic Using Er:YAG and Tribochemical Silica Coating as Surface Conditioning. Lasers Med. Sci. 2015, 30, 787–795. [Google Scholar] [CrossRef] [Green Version]
- Matinlinna, J.P.; Vallittu, P.K. Bonding of Resin Composites to Etchable Ceramic Surfaces? An Insight Review of the Chemical Aspects on Surface Conditioning. J. Oral Rehabil. 2007, 34, 622–630. [Google Scholar] [CrossRef]
- Martins, J.D.; Moura, D.M.D.; de Carvalho, R.L.A.; Leite, F.P.P.; Souza, R.O.A. Surface Treatment and Cementation of Lithium Silicate Ceramics Containing ZrO2. Oper. Dent. 2022, 47, 202–213. [Google Scholar] [CrossRef]
- Baldi, A.; Comba, A.; Ferrero, G.; Italia, E.; Tempesta, R.M.; Paolone, G.; Mazzoni, A.; Breschi, L.; Scotti, N. External gap progression after cyclic fatigue of adhesive overlays and crowns made with high translucency zirconia or lithium silicate. J. Esthet. Restor. Dent. 2022, 34, 557–564. [Google Scholar] [CrossRef] [PubMed]
Group | Surface Treatment |
---|---|
A | Control group |
B | 9.5% hydrofluoric acid (HF) |
C | Silanisation |
D | 9.5% hydrofluoric acid (HF) and silanisation |
E | Sandblasting and silanisation |
F | Nd:YAG irradiation and silanisation |
G | Er:YAG irradiation and silanisation |
Group | Surface Roughness (Ra), nm | Logarithmised Data | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Surface Roughness (Ra) | ||||||||||
N | Mean Val. | St. Dev. | W ** | p * | N | Mean Val. | St. Dev. | W ** | p * | |
A | 3 | 127.8 | 71.8 | 0.9 | 0.4 | 3 | 4.75 | 0.54 | 0.96 | 0.61 |
B | 3 | 90.2 | 26.7 | 0.86 | 0.26 | 3 | 4.47 | 0.33 | 0.84 | 0.2 |
C | 3 | 75.2 | 13.9 | 0.8 | 0.1 | 3 | 4.31 | 0.2 | 0.79 | 0.09 |
D | 3 | 106.8 | 22.8 | 0.94 | 0.54 | 3 | 4.66 | 0.21 | 0.96 | 0.63 |
E | 3 | 282.1 | 271.2 | 0.84 | 0.21 | 3 | 5.34 | 0.94 | 0.93 | 0.48 |
F | 3 | 100.7 | 54.7 | 0.9 | 0.37 | 3 | 4.52 | 0.52 | 0.95 | 0.57 |
G | 3 | 2863.3 | 1194.5 | 1 | 0.92 | 3 | 7.89 | 0.46 | 0.97 | 0.69 |
Group | Surface Roughness (Rz), nm | Logarithmised Data | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Surface Roughness (Rz) | ||||||||||
N | Mean Val. | St. Dev. | W ** | p * | N | Mean Val. | St. Dev. | W ** | p * | |
A | 3 | 1095.4 | 701.1 | 0.88 | 0.32 | 3 | 6.87 | 0.61 | 0.94 | 0.54 |
B | 3 | 763.1 | 223.4 | 0.78 | 0.07 | 3 | 6.60 | 0.33 | 0.77 | 0.06 |
C | 3 | 592.7 | 114.1 | 0.87 | 0.29 | 3 | 6.37 | 0.20 | 0.85 | 0.24 |
D | 3 | 879.3 | 269.1 | 0.95 | 0.56 | 3 | 6.75 | 0.30 | 0.98 | 0.70 |
E | 3 | 2382.7 | 1557.8 | 0.93 | 0.48 | 3 | 7.63 | 0.65 | 0.99 | 0.78 |
F | 3 | 887.9 | 583.6 | 0.86 | 0.27 | 3 | 6.65 | 0.62 | 0.92 | 0.47 |
G | 3 | 15592.2 | 5958.0 | 1.00 | 0.95 | 3 | 9.60 | 0.40 | 0.99 | 0.84 |
Group | Surface Roughness (Ra), nm | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|
Mean Val. | St. Dev. | Median | Q1 | Q3 | Min. | Max. | p | |
A | 127.8 | 71.8 | 102.0 | 72.5 | 209.0 | 72.5 | 209.0 a | <0.0001 |
B | 90.2 | 26.7 | 101.8 | 59.7 | 109.2 | 59.7 | 109.2 a | |
C | 75.2 | 13.9 | 82.5 | 59.2 | 84.0 | 59.2 | 84.0 a | |
D | 106.8 | 22.8 | 100.5 | 87.8 | 132.2 | 87.8 | 132.2 a | |
E | 282.1 | 271.2 | 155.5 | 97.3 | 593.5 | 97.3 | 593.5 a | |
F | 100.7 | 54.7 | 80.3 | 59.2 | 162.7 | 59.2 | 162.7 a | |
G | 2863.3 | 1194.5 | 2923.3 | 1640.0 | 4026.7 | 1640.0 | 4026.7 |
Group | Surface Roughness (Rz), nm | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|
Mean Val. | St. Dev. | Median | Q1 | Q3 | Min. | Max. | p | |
A | 1095.4 | 701.1 | 813.2 | 579.5 | 1893.7 | 579.5 | 1893.7 a | <0.0001 |
B | 763.1 | 223.4 | 883.5 | 505.3 | 900.5 | 505.3 | 900.5 a | |
C | 592.7 | 114.1 | 640.7 | 462.5 | 675.0 | 462.5 | 675.0 a | |
D | 879.3 | 269.1 | 809.0 | 652.3 | 1176.5 | 652.3 | 1176.5 a | |
E | 2382.7 | 1557.8 | 1897.2 | 1125.5 | 4125.5 | 1125.5 | 4125.5 a | |
F | 887.9 | 583.6 | 637.3 | 471.5 | 1555.0 | 471.5 | 1555.0 a | |
G | 15592.2 | 5958.0 | 15405.0 | 9730.0 | 21641.7 | 9730.0 | 21641.7 |
ID Spectrum | Group | Number of Zr-Kα Pulses | Category |
---|---|---|---|
VC8872 | A | 104027 | 1 |
VC8860 | B | 103649 | 2 |
VC8861 | C | 99296 | 2 |
VC8862 | D | 103601 | 2 |
VC8863 | E | 103620 | 2 |
VC8866 | F | 105084 | 3 |
VC8867 | G | 102882 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carek, A.; Slokar Benić, L.; Komar, D.; Krebelj, E. Roughness of the Surface of Zirconia Reinforced Lithium Disilicate Ceramic Treated by Different Procedures. Materials 2023, 16, 265. https://doi.org/10.3390/ma16010265
Carek A, Slokar Benić L, Komar D, Krebelj E. Roughness of the Surface of Zirconia Reinforced Lithium Disilicate Ceramic Treated by Different Procedures. Materials. 2023; 16(1):265. https://doi.org/10.3390/ma16010265
Chicago/Turabian StyleCarek, Andreja, Ljerka Slokar Benić, Daniel Komar, and Ena Krebelj. 2023. "Roughness of the Surface of Zirconia Reinforced Lithium Disilicate Ceramic Treated by Different Procedures" Materials 16, no. 1: 265. https://doi.org/10.3390/ma16010265
APA StyleCarek, A., Slokar Benić, L., Komar, D., & Krebelj, E. (2023). Roughness of the Surface of Zirconia Reinforced Lithium Disilicate Ceramic Treated by Different Procedures. Materials, 16(1), 265. https://doi.org/10.3390/ma16010265