Rheological Modeling of Bituminous Mixtures Including Polymer-Modified Binder and Fine Crumb Rubber Added through Dry Process
Abstract
:1. Introduction
- chips, with dimensions between 20 and 50 mm,
- crumbs, with dimensions between 0.8 and 20 mm, and
- powder, with sizes lower than 0.8 mm.
2. Materials and Methods
2.1. Objective and Experimental Program
2.2. Materials and Specimen Preparation
2.3. Test Protocol
3. Results
3.1. Test Data of Stiffness Modulus and Loss Angle
3.2. Application of the Huet-Sayegh Model
3.3. Analysis of Huet-Sayegh Model Parameters
4. Discussion
5. Conclusions
- The LVE behavior of PMB + RP_dry is thermo- and frequency-dependent. The time-temperature superposition principle can be applied, despite the presence of polymers and WR in the binder phase.
- The Huet-Sayegh model can simulate the rheological response of PMB + RP_dry mix, obtaining a good fitting of the dynamic modulus and loss angle data.
- The dynamic modulus of PMB + RP_dry mix is lower than that of PMB_nR mix and higher than that of B + CR_wet mix at all reduced frequencies.
- The loss angle of PMB + RP mix reaches noticeably higher values than the other HMAs, denoting marked viscous properties.
- The analysis of the Huet-Sayegh model parameters confirmed the high viscous dissipation features and the good relaxation ability for the PMB + RP mixture, mainly due to the nature of the modifiers, the binder content in the mix, and the less severe short-term aging.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ERTMA (European Tyre & Rubber Manufacturers’ Association). End of Life Tyres Management–Europe–2019. Available online: https://www.etrma.org/wp-content/uploads/2021/05/20210520_ETRMA_PRESS-RELEASE_ELT-2019.pdf (accessed on 6 December 2022).
- Gaweł, I.; Piłat, J.; Radziszewski, P.; Kowalski, K.J.; Krol, J.B. Rubber Modified Bitumen. In Polymer Modified Bitumen; Woodhead Publishing Limited: Cambridge, UK, 2011; pp. 72–97. [Google Scholar]
- Lewis, R.H.; Welborn, J.Y. The Effect of Various Rubbers on the Properties of Petroleum Asphalts. Public Roads 1954, 28, 64–89. [Google Scholar]
- Riekstins, A.; Baumanis, J.; Barbars, J. Laboratory investigation of crumb rubber in dense graded asphalt by wet and dry processes. Constr. Build. Mater. 2021, 292, 123459. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, M.; Li, Y.; Zou, Y.; Chen, A.; Wang, F.; Liu, L.; Gu, D.; Zhou, S. Swelled Mechanism of Crumb Rubber and Technical Properties of Crumb Rubber Modified Bitumen. Materials 2022, 15, 7987. [Google Scholar] [CrossRef]
- Ghabchi, R.; Arshadi, A.; Zaman, M.; March, F. Technical Challenges of Utilizing Ground Tire Rubber in Asphalt Pavements in the United States. Materials 2021, 14, 4482. [Google Scholar] [CrossRef]
- Harvey, J. More Sustainable Asphalt Experiences in California: Technologies, Cost and Environmental Impacts. In Proceedings of the Keynote Lecture of European Asphalt Technology Association Conference 2019, Granada, Spain, 3 June 2019. [Google Scholar]
- Li, F.; Zhang, X.; Wang, L.; Zhai, R. The preparation process, service performances and interaction mechanisms of crumb rubber modified asphalt (CRMA) by wet process: A comprehensive review. Constr. Build. Mater. 2022, 354, 129168. [Google Scholar] [CrossRef]
- Poovaneshvaran, S.; Zheng, L.W.; Hasan, M.R.M.; Yang, X.; Diab, A. Workability, compactibility and engineering properties of rubber-modified asphalt mixtures prepared via wet process. Int. J. Pavement Res. Technol. 2021, 14, 560–569. [Google Scholar] [CrossRef]
- Yun, J.; Hemmati, N.; Lee, M.-S.; Lee, S.-J. Laboratory Evaluation of Storage Stability for CRM Asphalt Binders. Sustainability 2022, 14, 7542. [Google Scholar] [CrossRef]
- Bahruddin, A.W.; Malik, A. The Effect of Technical Natural Rubber Mastication with Wet Process Mixing on the Characteristics of Asphalt-Rubber Blend. J. Phys. Conf. Ser. 2021, 2049, 012081. [Google Scholar] [CrossRef]
- Kong, P.; Xu, G.; Yang, J.; Chen, X.; Zhu, Y. Study on Storage Stability of Activated Reclaimed Rubber Powder Modified Asphalt. Materials 2021, 14, 4684. [Google Scholar] [CrossRef]
- Wang, S.; Huang, W.; Lin, P.; Wu, Z.; Kou, C.; Wu, B. Chemical, Physical, and Rheological Evaluation of Aging Behaviors of Terminal Blend Rubberized Asphalt Binder. J. Mater. Civ. Eng. 2021, 33, 04021302. [Google Scholar] [CrossRef]
- Wang, S.; Huang, W.; Kang, A. Laboratory evaluation of the properties of high-cured crumb rubber modified asphalt containing sulfur and polymer after the oxidative aging procedure. Constr. Build. Mater. 2021, 304, 124611. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Z. Development of terminal blend rubber and SBS modified asphalt: A case study. Constr. Build. Mater. 2022, 334, 127459. [Google Scholar] [CrossRef]
- Wang, S.; Huang, W.; Liu, X.; Lin, P. Evaluation of the Aging Properties of Terminal Blend Hybrid Asphalt Based on Chemical and Rheological Methods. Sustainability 2022, 14, 7865. [Google Scholar] [CrossRef]
- Tang, N.; Zhang, Z.; Dong, R.; Zhu, H.; Huang, W. Emission behavior of crumb rubber modified asphalt in the production process. J. Clean Prod. 2022, 340, 130850. [Google Scholar] [CrossRef]
- Ram Kumar, B.A.V.; Ramakrishna, G. Performance evaluation of sustainable materials in roller compacted concrete pavements: A state of art review. J. Build. Rehabil. 2022, 7, 78. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Apostolidis, P.; Scarpas, T. Rheological Behavior and Its Chemical Interpretation of Crumb Rubber Modified Asphalt Containing Warm-Mix Additives from Viscosity to Activation Energy. Transport. Res. Rec. 2018, 2672, 337–348. [Google Scholar] [CrossRef]
- Turbay, E.; Martinez-Arguelles, G.; Navarro-Donado, T.; Sánchez-Cotte, E.; Polo-Mendoza, R.; Covilla-Valera, E. Rheological Behaviour of WMA-Modified Asphalt Binders with Crumb Rubber. Polymers 2022, 14, 4148. [Google Scholar] [CrossRef]
- Gui, W.; Liang, L.; Wang, L.; Zhang, F. Cracking Resistance of Recycled Rubber Asphalt Binder Composed of Warm-Mix Additives. Materials 2022, 15, 4389. [Google Scholar] [CrossRef]
- Carpani, C.; Bocci, E.; Prosperi, E.; Bocci, M. Evaluation of the rheological and performance behaviour of bitumen modified with compounds including crumb rubber from waste tires. Constr. Build. Mater. 2022, 36126, 12967. [Google Scholar] [CrossRef]
- Lastra-González, P.; Rodriguez-Hernandez, J.; Real-Gutiérrez, C.; Castro-Fresno, D.; Vega-Zamanillo, Á. Effect of Different Types of “Dry Way” Additions in Porous Asphalt Mixtures. Materials 2022, 15, 1549. [Google Scholar] [CrossRef]
- Moreno-Navarro, F.; Rubio-Gamez, M.C. The Mechanical Performance of Dry-Process Crumb Rubber Modified Hot Bituminous Mixes: The Influence of Digestion Time and Crumb Rubber Percentage. Constr. Build. Mater. 2012, 26, 466–474. [Google Scholar] [CrossRef]
- Abdul Hassan, N.; Airey, G.; Putra Jaya, R.; Mashros, N.; Aziz, A.M.M. A Review of Crumb Rubber Modification in Dry Mixed Rubberised Asphalt Mixtures. Jurnal Teknologi 2014, 70, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Liang, M.; Qiu, Z.; Luan, X.; Qi, C.; Guo, N.; Liu, Z.; Su, L.; Yao, Z.; Zhang, J. The Effects of Activation Treatments for Crumb Rubber on the Compatibility and Mechanical Performance of Modified Asphalt Binder and Mixture by the Dry Method. Front. Mater. 2022, 9, 845718. [Google Scholar] [CrossRef]
- Subhy, A.; Airey, G.; Lo Presti, D. An Investigation of the Mechanical Properties of Rubber Modified Asphalt Mixtures Using a Modified Dry Process. In Proceedings of the 10th International Conference on the Bearing Capacity of Roads, Railways and Airfields, BCRRA 2017, Athens, Greece, 28–30 June 2017. [Google Scholar] [CrossRef]
- Kedarisetty, S.; Prapoorna, K.; Sousa, J.B. Advanced Rheological Characterization of Reacted and Activated Rubber (RAR) Modified Asphalt Binders. Constr. Build. Mater. 2016, 122, 12–22. [Google Scholar] [CrossRef]
- Kedarisetty, S.; Saha, G.; Biligiri, K.P.; Sousa, J.B. Reacted and Activated Rubber (RAR)-Modified Dense-Graded Asphalt Mixtures: Design and Performance Evaluation. J. Test. Eval. 2018, 46, 2511–2520. [Google Scholar] [CrossRef]
- Chen, S.; Ge, D.; Gong, F.; You, Z.; Diab, A.; Ye, M. Rheological properties and chemical characterisation of reacted and activated rubber modified asphalt binder. Road Mater. Pavement 2020, 21 (Suppl. 1), S140–S154. [Google Scholar] [CrossRef]
- Gong, F.; Lin, W.; Chen, Z.; Shen, T.; Hu, C. High-Temperature Rheological Properties of Crumb Rubber Composite Modified Asphalt. Sustainability 2022, 14, 8999. [Google Scholar] [CrossRef]
- Plati, C.; Cliatt, B. Building Sustainable Pavements: Investigating the Effectiveness of Recycled Tire Rubber as a Modifier in Asphalt Mixtures. Energies 2021, 14, 7099. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Tran, T.N. Effects of Crumb Rubber Content and Curing Time on the Properties of Asphalt Concrete and Stone Mastic Asphalt Using Dry Process. Int. J. Pavement Res. Technol. 2018, 11, 236–244. [Google Scholar] [CrossRef]
- Ye, Y.; Hao, Y.; Zhuang, C. Abrasion Resistance and Rutting Resistance of Micro-Surfacing with Crumb Rubber of Dry Process. In Proceedings of the 7th International Conference on Environmental Science and Civil Engineering, Nanchang, China, 9–10 January 2021. [Google Scholar] [CrossRef]
- Kukiełka, J.; Bańkowski, W.; Mirski, K. Asphalt-Cement Concretes with Reclaimed Asphalt Pavement and Rubber Powder from Recycled Tire. Materials 2021, 14, 2412. [Google Scholar] [CrossRef]
- Tahami, S.A.; Mirhosseini, A.F.; Dessouky, S.; Mork, H.; Kavussi, A. The Use of High Content of Fine Crumb Rubber in Asphalt Mixes Using Dry Process. Constr. Build. Mater. 2019, 222, 643–653. [Google Scholar] [CrossRef]
- Feiteira Dias, J.L.; Picado-Santos, L.G.; Capitão, S.D. Mechanical Performance of Dry Process Fine Crumb Rubber Asphalt Mixtures Placed on the Portuguese Road Network. Constr. Build. Mater. 2014, 73, 247–254. [Google Scholar] [CrossRef]
- Picado-Santos, L.G.; Capitão, S.D.; Feiteira Dias, J.L. Crumb Rubber Asphalt Mixtures by Dry Process: Assessment after Eight Years of Use on a Low/Medium Trafficked Pavement. Constr. Build. Mater. 2019, 215, 9–21. [Google Scholar] [CrossRef]
- Wang, Y.; Zhan, B.; Cheng, J. Study on Preparation Process of SBS/Crumb Rubber Composite Modified Asphalt. Adv. Mater. Res. 2012, 450–451, 417–422. [Google Scholar] [CrossRef]
- Ye, Y.; Xu, G.; Lou, L.; Chen, X.; Cai, D.; Shi, Y. Evolution of Rheological Behaviors of Styrene-Butadiene-Styrene/Crumb Rubber Composite Modified Bitumen after Different Long-Term Aging Processes. Materials 2019, 12, 2345. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Huang, W.; Zhang, Y.; Yan, C.; Lv, Q.; Guan, W. Evaluation of the Terminal Blend Crumb Rubber/SBS Composite Modified Asphalt. Constr. Build. Mater. 2021, 278, 122377. [Google Scholar] [CrossRef]
- Li, H.; Cui, C.; Temitope, A.A.; Feng, Z.; Zhao, G.; Guo, P. Effect of SBS and crumb rubber on asphalt modification: A review of the properties and practical application. J. Traffic Transport. Eng. 2022, 9, 836–863. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, Z.; Du, Y.; Cheng, J.; Que, G. Preparation Technology and Performance Analysis of Crumb Rubber and SBS Composite Modified Asphalt Binder. Adv. Mater. Res. 2011, 160–162, 1320–1324. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C. Physical and Rheological Properties of Crumb Rubber/ Styrene–Butadiene–Styrene Compound Modified Asphalts. Polym. Compos. 2015, 38, 1918–1927. [Google Scholar] [CrossRef]
- Xiao, F.; Zong, Q.; Wang, J.; Chen, J.; Liu, J. Storage Stability Characterization and Improvement of SBS and Crumb Rubber Composite Modified Asphalt. Road Mater. Pavement 2022, 23, 509–526. [Google Scholar] [CrossRef]
- Joohari, I.B.; Giustozzi, F. Waste Tyres Crumb Rubber as a Sustainability Enhancer for Polymer-Modified and Hybrid Polymer-Modified Bitumen. Int. J. Pavement Eng. 2022, 23, 4357–4371. [Google Scholar] [CrossRef]
- Navarro Gonzalez, M.; Wagner, M.H. Influence of Rubber Pre-Processing on the Rheological Behavior of SBS/Crumb Rubber-Modified Bitumen. Annu. Trans. Nord. Rheol. Soc. 2009, 17, 183–189. [Google Scholar]
- Vignali, V.; Mazzotta, F.; Sangiorgi, C.; Simone, A.; Lantieri, C.; Dondi, G. Incorporation of Rubber Powder as Filler in a New Dry-Hybrid Technology: Rheological and 3D DEM Mastic Performances Evaluation. Materials 2016, 9, 842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangiorgi, C.; Tataranni, P.; Simone, A.; Vignali, V.; Lantieri, C.; Dondi, G. Stone mastic asphalt (SMA) with crumb rubber according to a new dry-hybrid technology: A laboratory and trial field evaluation. Constr. Build. Mater. 2018, 182, 200–209. [Google Scholar] [CrossRef]
- Mazzotta, F.; Tataranni, P.; Simone, A.; Fornai, D.; Airey, G.; Sangiorgi, C. Multi-Scale Rheo-Mechanical Study of SMA Mixtures Containing Fine Crumb Rubber in a New Dry-Hybrid Technology. Appl. Sci. 2020, 10, 3887. [Google Scholar] [CrossRef]
- Preethi, S.; Tangadagi, R.B.; Manjunatha, M.; Bharath, A. Sustainable effect of chemically treated aggregates on bond strength of bitumen. J. Green Eng. 2020, 10, 5076–5089. [Google Scholar]
- Prosperi, E.; Bocci, E.; Bocci, M. Evaluation of the rejuvenating effect of different additives on bituminous mixtures including hot-recycled RA as a function of the production temperature. Road Mater. Pavement 2021, 23, 2798–2817. [Google Scholar] [CrossRef]
- Prosperi, E.; Bocci, E.; Bocci, M. Effect of Bitumen Production Process and Mix Heating Temperature on the Rheological Properties of Hot Recycled Mix Asphalt. Sustainability 2022, 14, 9677. [Google Scholar] [CrossRef]
- Gergesova, M.; Zupančič, B.; Saprunov, I.; Emri, I. The Closed Form T-T-P Shifting (CFS) Algorithm. J. Rheol. 2011, 55, 1–16. [Google Scholar] [CrossRef]
- Sayegh, G. Viscoelastic Properties of Bituminous Mixtures. In Proceedings of the International Conference on Structural Design Asphalt Pavements, Ann Arbor, MI, USA, 7–11 August 1967. [Google Scholar]
- Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley & Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Tschoegl, N.W.; Knauss, W.G.; Emri, I. The Effect of Temperature and Pressure on the Mechanical Properties of Thermo- and/or Piezorheologically Simple Polymeric Materials in Thermodynamic Equilibrium–A Critical Review. Mech. Time-Depend. Mat. 2002, 6, 53–99. [Google Scholar] [CrossRef]
Mix Code | Bitumen Type | Rubber Type | Rubber Processing |
---|---|---|---|
PMB_nR | SBS-modified | No rubber | - |
B + CR_wet | Unmodified | Crumb rubber | Wet processing |
PMB + RP_dry | SBS-modified | Rubber powder | Dry processing |
Property | Method | Mix | ||
---|---|---|---|---|
PMB_nR | B + CR_Wet | PMB + RP_Dry | ||
Penetration @ 25 °C, 100 g/5 s (0.1 mm) | EN 1426 | 50–70 | 25–75 | 22–55 |
Softening point (°C) | EN 1427 | ≥70 | ≥54 | ≥ 70 |
Elastic recovery @ 25 °C (%) | EN 13398 | ≥80 | – | ≥75 |
HMA mixing temperature (°C) | – | 180 | 180 | 150 |
Properties after RTFOT (EN 12607-1) | ||||
Retained penetration @ 25 °C, 100 g/5 s (%) | EN 1426 | ≥40 | ≥60 | ≥65 |
Increase in softening point (°C) | EN 1427 | ≤5 | ≤12 | ≤8 |
Sieve Size [mm] | Passing [%] | |
---|---|---|
CR | RP | |
3.35 | 100 | 100 |
2.50 | 97.9 | 100 |
2.36 | 89.7 | 100 |
2.0 | 55.8 | 100 |
1.4 | 15.3 | 100 |
1.0 | 3.7 | 99.9 |
0.800 | 0.6 | 91.6 |
0.600 | 0.0 | 49.5 |
0.500 | 0.0 | 37.1 |
0.425 | 0.0 | 27.2 |
0.355 | 0.0 | 16.4 |
0.300 | 0.0 | 10.2 |
0.212 | 0.0 | 3.7 |
Specimen | Air Voids Content [%] | Binder Content [%-By-Mix] |
---|---|---|
PMB_nR_1 | 5.02 | 6.46 |
PMB_nR_2 | 4.02 | |
B + CR_wet_1 | 4.33 | 7.27 |
B + CR_wet_2 | 6.08 | |
PMB + RP_dry_1 | 6.34 | 7.67 |
PMB + RP_dry_2 | 4.64 |
Specimen | Eg [MPa] | Ee [MPa] | k [-] | h [-] | δ [-] | τ0 [-] | C1 [-] | C2 [°C] |
---|---|---|---|---|---|---|---|---|
PMB_nR_1 | 23,000 | 175 | 0.304 | 0.306 | 1.568 | 0.203 | 13.7 | 95.2 |
PMB_nR_2 | 25,704 | 89 | 1.444 | 0.067 | 12.2 | 79.2 | ||
B + CR_wet_1 | 17,490 | 100 | 0.263 | 0.486 | 3.979 | 0.190 | 31.1 | 265.8 |
B + CR_wet_2 | 12,697 | 102 | 3.532 | 0.172 | 10.3 | 98.2 | ||
PMB + RP_dry_1 | 13,810 | 111 | 0.274 | 0.625 | 3.285 | 2.102 | 19.1 | 157.2 |
PMB + RP_dry_2 | 25,035 | 76 | 4.215 | 0.651 | 12.4 | 84.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bocci, E.; Prosperi, E.; Bocci, M. Rheological Modeling of Bituminous Mixtures Including Polymer-Modified Binder and Fine Crumb Rubber Added through Dry Process. Materials 2023, 16, 310. https://doi.org/10.3390/ma16010310
Bocci E, Prosperi E, Bocci M. Rheological Modeling of Bituminous Mixtures Including Polymer-Modified Binder and Fine Crumb Rubber Added through Dry Process. Materials. 2023; 16(1):310. https://doi.org/10.3390/ma16010310
Chicago/Turabian StyleBocci, Edoardo, Emiliano Prosperi, and Maurizio Bocci. 2023. "Rheological Modeling of Bituminous Mixtures Including Polymer-Modified Binder and Fine Crumb Rubber Added through Dry Process" Materials 16, no. 1: 310. https://doi.org/10.3390/ma16010310
APA StyleBocci, E., Prosperi, E., & Bocci, M. (2023). Rheological Modeling of Bituminous Mixtures Including Polymer-Modified Binder and Fine Crumb Rubber Added through Dry Process. Materials, 16(1), 310. https://doi.org/10.3390/ma16010310