Study on the Automatic Identification of ABX3 Perovskite Crystal Structure Based on the Bond-Valence Vector Sum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Feature Engineering
2.3. Machine Learning Modeling
2.4. Model Evaluation
3. Results
3.1. ML Algorithm Analysis
3.2. BVVS Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, Z.; Song, Z.; Hao, H.; Yu, Z.; Cao, M.; Zhang, S.; Lanagan, M.T.; Liu, H. Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances. Adv. Mater. 2017, 29, 1601727. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Sun, W.; Fan, M.; Qian, J.; Jiang, J.; Dan, Z.; Lin, Y.; Nan, C.-W.; Li, M.; Shen, Y. Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers. Appl. Surf. Sci. 2018, 458, 743–750. [Google Scholar] [CrossRef]
- Yang, L.; Kong, X.; Li, F.; Hao, H.; Cheng, Z.; Liu, H.; Li, J.-F.; Zhang, S. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 2019, 102, 72–108. [Google Scholar] [CrossRef]
- Yin, W.-J. Density functional theory-free descriptor for the practical discovery of perovskite catalysts. Comput. Mater. Sci. 2021, 193, 110342. [Google Scholar] [CrossRef]
- Pan, Y.-Y.; Su, Y.-H.; Hsu, C.-H.; Huang, L.-W.; Kaun, C.-C. The electronic structure of organic–inorganic hybrid perovskite solar cell: A first-principles analysis. Comput. Mater. Sci. 2016, 117, 573–578. [Google Scholar] [CrossRef]
- Yang, C.; Yi, Y.; Li, Y.R. Modelling and simulation of reaction mechanisms in early growth of STO thin films from ab initio calculations. Comput. Mater. Sci. 2010, 49, 845–849. [Google Scholar] [CrossRef]
- Xie, J.; Yao, Z.; Hao, H.; Xie, Y.; Li, Z.; Liu, H.; Cao, M. A novel lead-free bismuth magnesium titanate thin films for energy storage applications. J. Am. Ceram. Soc. 2019, 102, 3819–3822. [Google Scholar] [CrossRef]
- Park, N.-G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65–72. [Google Scholar] [CrossRef]
- Sahare, S.; Pham, H.D.; Angmo, D.; Ghoderao, P.; MacLeod, J.; Khan, S.B.; Lee, S.-L.; Singh, S.P.; Sonar, P. Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges. Adv. Energy Mater. 2021, 11, 2101085. [Google Scholar] [CrossRef]
- Lee, D.-G.; Pandey, P.; Parida, B.; Ryu, J.; Cho, S.; Kim, J.-K.; Kang, D.-W. Improving inorganic perovskite photovoltaic performance via organic cation addition for efficient solar energy utilization. Energy 2022, 257, 124640. [Google Scholar] [CrossRef]
- Tong, J.; Jiang, Q.; Ferguson, A.J.; Palmstrom, A.F.; Wang, X.; Hao, J.; Dunfield, S.P.; Louks, A.E.; Harvey, S.P.; Li, C.; et al. Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 2022, 7, 642–651. [Google Scholar] [CrossRef]
- Barreda, A.; Hell, S.; Weissflog, M.A.; Minovich, A.; Pertsch, T.; Staude, I. Metal, dielectric and hybrid nanoantennas for enhancing the emission of single quantum dots: A comparative study. J. Quant. Spectrosc. Radiat. Transf. 2021, 276, 107900. [Google Scholar] [CrossRef]
- Barreda, Á.; Vitale, F.; Minovich, A.E.; Ronning, C.; Staude, I. Applications of Hybrid Metal-Dielectric Nanostructures: State of the Art. Adv. Photonics Res. 2022, 3, 2100286. [Google Scholar] [CrossRef]
- Saal, J.E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 2013, 65, 1501–1509. [Google Scholar] [CrossRef]
- Hellenbrandt, M. The Inorganic Crystal Structure Database (ICSD)—Present and Future. Crystallogr. Rev. 2004, 10, 17–22. [Google Scholar] [CrossRef]
- Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine learning in materials informatics: Recent applications and prospects. npj Comput. Mater. 2017, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Sun, Z.; Yin, H.; Liu, X.; Wang, J.; Zhao, H.; Pang, C.H.; Wu, T.; Li, S.; Yin, Z.; et al. Data-Driven Materials Innovation and Applications. Adv. Mater. 2022, 34, 2104113. [Google Scholar] [CrossRef]
- Park, W.B.; Chung, J.; Jung, J.; Sohn, K.; Singh, S.P.; Pyo, M.; Shin, N.; Sohn, K.S. Classification of crystal structure using a convolutional neural network. IUCrJ 2017, 4, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Oviedo, F.; Ren, Z.; Sun, S.; Settens, C.; Liu, Z.; Hartono, N.T.P.; Ramasamy, S.; DeCost, B.L.; Tian, S.I.P.; Romano, G.; et al. Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. npj Comput. Mater. 2019, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vecsei, P.M.; Choo, K.; Chang, J.; Neupert, T. Neural network based classification of crystal symmetries from x-ray diffraction patterns. Phys. Rev. B 2019, 99, 245120. [Google Scholar] [CrossRef]
- Suzuki, Y.; Hino, H.; Hawai, T.; Saito, K.; Kotsugi, M.; Ono, K. Symmetry prediction and knowledge discovery from X-ray diffraction patterns using an interpretable machine learning approach. Sci. Rep. 2020, 10, 21790. [Google Scholar] [CrossRef] [PubMed]
- Jha, D.; Ward, L.; Paul, A.; Liao, W.-k.; Choudhary, A.; Wolverton, C.; Agrawal, A. ElemNet: Deep Learning the Chemistry of Materials from Only Elemental Composition. Sci. Rep. 2018, 8, 17593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Z.; Dan, Y.; Xiong, Z.; Niu, C.; Li, X.; Qian, S.; Hu, J. Convolutional Neural Networks for Crystal Material Property Prediction Using Hybrid Orbital-Field Matrix and Magpie Descriptors. Crystals 2019, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Goodall, R.E.A.; Lee, A.A. Predicting materials properties without crystal structure: Deep representation learning from stoichiometry. Nat. Commun. 2020, 11, 6280. [Google Scholar] [CrossRef]
- Allam, O.; Holmes, C.; Greenberg, Z.; Kim, K.C.; Jang, S.S. Density Functional Theory—Machine Learning Approach to Analyze the Bandgap of Elemental Halide Perovskites and Ruddlesden-Popper Phases. ChemPhysChem 2018, 19, 2559–2565. [Google Scholar] [CrossRef]
- Li, W.; Jacobs, R.; Morgan, D. Predicting the thermodynamic stability of perovskite oxides using machine learning models. Comput. Mater. Sci. 2018, 150, 454–463. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xu, Q.; Sun, Q.; Hou, Z.; Yin, W.-J. Thermodynamic Stability Landscape of Halide Double Perovskites via High-Throughput Computing and Machine Learning. Adv. Funct. Mater. 2019, 29, 1807280. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Die Gesetze der Krystallochemie. Die Nat. 1926, 14, 477–485. [Google Scholar] [CrossRef]
- Harvey, M.A.; Baggio, S.; Baggio, R. A new simplifying approach to molecular geometry description: The vectorial bond-valence model. Acta Crystallogr. Sect. B 2006, 62, 1038–1042. [Google Scholar] [CrossRef]
- Brown, I.D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallogr. Sect. B Struct. Sci. 1985, 41, 244–247. [Google Scholar] [CrossRef]
- Takahashi, K.; Takahashi, L.; Baran, J.D.; Tanaka, Y. Descriptors for predicting the lattice constant of body centered cubic crystal. J. Chem. Phys. 2017, 146, 204104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarin, S.; Yuan, Y.; Zhang, M.; Hu, M.; Rana, M.; Wang, S.; Knibbe, R. Predicting the Crystal Structure and Lattice Parameters of the Perovskite Materials via Different Machine Learning Models Based on Basic Atom Properties. Crystals 2022, 12, 1570. [Google Scholar] [CrossRef]
- Liang, H.; Stanev, V.; Kusne, A.G.; Takeuchi, I. CRYSPNet: Crystal structure predictions via neural networks. Phys. Rev. Mater. 2020, 4, 123802. [Google Scholar] [CrossRef]
- Li, Y.; Dong, R.; Yang, W. Composition based crystal materials symmetry prediction using machine learning with enhanced descriptors. Comput. Mater. Sci. 2021, 198, 110686. [Google Scholar] [CrossRef]
Descriptors | Physical Meaning | Descriptors | Physical Meaning |
---|---|---|---|
n_atom | Number of atoms | TCD | Thermal conductivity |
Z | Atomic number | Tb | Boiling point |
G | Group in periodic table | Tm | Melting point |
P | Period in periodic table | Tc | Critical temperature |
M | Atomic mass | Ef | Enthalpy of fusion |
Vmol | Molar volume | FIE | First ionization |
Ra | Atomic radius | es | The number of electrons in s orbitals |
Ri | Average ionic radius | ep | The number of electrons in p orbitals |
Rvdw | Van der Waals | ed | The number of electrons in d orbitals |
Rc | Covalent radius | ef | The number of electrons in f orbitals |
X | Pauling electronegativity | ER | Electrical resistivity |
EA | Electron affinity | BVVS | The bond-valence vector sum |
Descriptors | Physical Meaning |
---|---|
n_atom | Number of atoms |
BVVS | The bond-valence vector sum |
Z | Atomic number |
Ri | Average ionic radius |
Ra | Atomic radius |
M | Atomic mass |
X | Pauling electronegativity |
Vmol | Molar volume |
Rc | Covalent radius |
TCD | Thermal conductivity |
Algorithm | ACC | MCC | F1-Score |
---|---|---|---|
SVC | 0.372 | 0.023 | 0.207 |
GBDT | 0.898 | 0.872 | 0.900 |
RF | 0.915 | 0.883 | 0.906 |
XGBoost | 0.853 | 0.795 | 0.814 |
Algorithm | ACC | MCC | F1-Score |
---|---|---|---|
SVC | 0.367 | 0.048 | 0.197 |
GBDT | 0.777 | 0.717 | 0.767 |
RF | 0.806 | 0.756 | 0.796 |
XGBoost | 0.690 | 0.600 | 0.626 |
Hyperparameters | Value |
---|---|
criterion | entropy |
n_estimators | 100 |
max_depth | 10 |
n_job | −1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhuang, Z.; Fang, Q.; Wang, X. Study on the Automatic Identification of ABX3 Perovskite Crystal Structure Based on the Bond-Valence Vector Sum. Materials 2023, 16, 334. https://doi.org/10.3390/ma16010334
Zhang L, Zhuang Z, Fang Q, Wang X. Study on the Automatic Identification of ABX3 Perovskite Crystal Structure Based on the Bond-Valence Vector Sum. Materials. 2023; 16(1):334. https://doi.org/10.3390/ma16010334
Chicago/Turabian StyleZhang, Laisheng, Zhong Zhuang, Qianfeng Fang, and Xianping Wang. 2023. "Study on the Automatic Identification of ABX3 Perovskite Crystal Structure Based on the Bond-Valence Vector Sum" Materials 16, no. 1: 334. https://doi.org/10.3390/ma16010334
APA StyleZhang, L., Zhuang, Z., Fang, Q., & Wang, X. (2023). Study on the Automatic Identification of ABX3 Perovskite Crystal Structure Based on the Bond-Valence Vector Sum. Materials, 16(1), 334. https://doi.org/10.3390/ma16010334