Integration of Carbon Dots on Nanoflower Structured ZnCdS as a Cocatalyst for Photocatalytic Degradation
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Synthesis of Zn0.2Cd0.8S and Zn0.2Cd0.8S@CDs
2.3. Characterization
3. Results and Discussion
3.1. Morphologic Analysis of the Zn0.2Cd0.8S@CD Catalyst
3.2. Structural Analysis of the Zn0.2Cd0.8S@CD Catalyst
3.3. Study of Photocatalytic Degradation of RhB
3.4. Mechanism Exploration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rao, W.; Piliouras, P.; Wang, X.; Guido, A.; Kugler, K.; Sieren, B.; Wang, L.; Lv, G.; Li, Z. Zwitterionic dye rhodamine B (RhB) uptake on different types of clay minerals. Appl. Clay Sci. 2020, 197, 105790. [Google Scholar] [CrossRef]
- Sun, D.; Yang, X. Rapid Determination of Toxic Rhodamine B in Food Samples Using Exfoliated Graphene-Modified Electrode. Food Anal. Methods 2017, 10, 2046–2052. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, T.; He, L.; Xu, D.; Bai, L. Oxidative degradation of Rhodamine B by Ag@CuO nanocomposite activated persulfate. Synth. Met. 2020, 267, 116479. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, E.; Xu, D.; Guo, Q. Activation of peroxymonosulfate by bimetallic CoMn oxides loaded on coal fly ash-derived SBA-15 for efficient degradation of Rhodamine B. Sep. Purif. Technol. 2021, 274, 119081. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, K.; Xu, H.; Yan, W. Electrochemical oxidation of rhodamine B by PbO2/Sb-SnO2/TiO2 nanotube arrays electrode. Chin. J. Catal. 2019, 40, 917–927. [Google Scholar] [CrossRef]
- Dai, Q.; Jiang, L.; Luo, X.B. Electrochemical oxidation of rhodamine B: Optimization and degradation mechanism. Int. J. Electrochem. Sci. 2017, 12, 4265–4276. [Google Scholar] [CrossRef]
- Guo, S.; Yang, Z.; Wen, Z.; Fida, H.; Zhang, G.; Chen, J. Reutilization of iron sludge as heterogeneous Fenton catalyst for the degradation of rhodamine B: Role of sulfur and mesoporous structure. J. Colloid Interface Sci. 2018, 532, 441–448. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Van, H.T.; Ngo, Q.N.; Thai, V.N.; Hoang, V.H.; Hai, N.T.T. Improving Fenton-like oxidation of Rhodamin B using a new catalyst based on magnetic/iron-containing waste slag composite. Environ. Technol. Innov. 2021, 23, 101582. [Google Scholar] [CrossRef]
- Liu, P.; Zhong, D.; Xu, Y.; Zhong, N.; He, G. Co/Fe co-doped porous graphite carbon derived from metal organic framework for microelectrolysis-Fenton catalytic degradation of Rhodamine B. J. Environ. Chem. Eng. 2021, 9, 105924. [Google Scholar] [CrossRef]
- Yang, L.; Chen, J.; Liu, X.; Que, M.; Zhao, Y.; Zheng, H.; Yang, T.; Liu, Z.; Li, Y.; Yang, X. 2D/2D BiOBr/(001)-TiO2 heterojunction toward enhanced photocatalytic degradation activity of Rhodamine B. J. Alloys Compd. 2021, 884, 161064. [Google Scholar] [CrossRef]
- Hu, L.; Mao, D.; Yang, L.H.; Zhu, M.S.; Fei, Z.H.; Sun, S.X.; Fang, D. In2S3 nanoparticles coupled to In-MOF nanorods: The structural and electronic modulation for synergetic photocatalytic degradation of Rhodamine B. Environ. Res. 2022, 203, 111874. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.H.; Jayakumar, J.; Abdellah, M.; Mansoure, T.H.; Zheng, K.; Elewa, A.M.; Chang, C.-L.; Ting, L.-Y.; Lin, W.-C.; Yu, H.H.; et al. Visible-light-driven hydrogen evolution using nitrogen-doped carbon quantum dot-implanted polymer dots as metal-free photocatalysts. Appl. Catal. B Environ. 2021, 283, 119659. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, M.; Chen, Y.; Li, T.; Jing, Q.; Liu, P. Hydroxyl-Rich Porous Silica Nanosheets Decorated with Oxygen-Doped Carbon Nitride Nanoparticles for Photocatalytic Degradation of Rhodamine B. ACS Appl. Nano Mater. 2022, 5, 818–831. [Google Scholar] [CrossRef]
- Zeng, R.; Sun, Z.; Cao, S.; Shen, R.; Liu, Z.; Xiong, Y.; Long, J.; Zheng, J.; Zhao, Y.; Shen, Y.; et al. Facile synthesis of Ag-doped ZnCdS nanocrystals and transformation into Ag-doped ZnCdSSe nanocrystals with Se treatment. RSC Adv. 2015, 5, 1083–1090. [Google Scholar] [CrossRef]
- Ding, J.; Wang, H.; Luo, Y.; Xu, Y.; Liu, J.; Lin, R.; Gao, Y.; Lin, Y. Carbon Quantum Dots Modified (002) Oriented Bi2O2CO3 Composites with Enhanced Photocatalytic Removal of Toluene in Air. Nanomaterials 2020, 10, 1795. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-C.; Liu, Y.-N.; Zhou, X.; Guo, H.-L.; Zhao, Z.-W.; Liang, K.; Xu, A.-W. Large improvement of visible-light photocatalytic H-2-evolution based on cocatalyst-free Zn0.5Cd0.5S synthesized through a two-step process. Catal. Sci. Technol. 2017, 7, 961–967. [Google Scholar] [CrossRef]
- Qin, X.; Cao, R.; Gong, W.; Luo, L.; Shi, G.; Ji, L.; Zhu, A. Hydrothermal growth of ZnCdS/TiO2 nanoparticles on the surface of the Ti3C2 MXene sheet to enhance photocatalytic performance under visible light. J. Solid State Chem. 2022, 306, 122750. [Google Scholar] [CrossRef]
- Kausar, A. Polymer/carbon-based quantum dot nanocomposite: Forthcoming materials for technical application. J. Macromol. Sci. Part A Pure Appl. Chem. 2019, 56, 341–356. [Google Scholar] [CrossRef]
- Wareing, T.C.; Gentile, P.; Phan, A.N. Biomass-Based Carbon Dots: Current Development and Future Perspectives. ACS Nano 2021, 15, 15471–15501. [Google Scholar] [CrossRef]
- Bai, Y.; Yi, X.; Li, B.; Chen, S.; Fan, Z. Constructing porous polyimide/carbon quantum dots aerogel with efficient photocatalytic property under visible light. Appl. Surf. Sci. 2022, 578, 151993. [Google Scholar] [CrossRef]
- Gu, S.; Hsieh, C.-T.; Gandomi, Y.A.; Li, J.; Yue, X.X.; Chang, J.-K. Tailoring fluorescence emissions, quantum yields, and white light emitting from nitrogen-doped graphene and carbon nitride quantum dots. Nanoscale 2019, 11, 16553–16561. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, L.; Chen, L.; Gao, L.; Zhu, J.; Fu, H. Unique insights into photocatalytic VOCs oxidation over WO3/carbon dots nanohybrids assisted by water activation and electron transfer at interfaces. J. Hazard. Mater. 2022, 423. [Google Scholar] [CrossRef] [PubMed]
- Ming, H.; Wei, D.; Yang, Y.; Chen, B.; Yang, C.; Zhang, J.; Hou, Y. Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation. Chem. Eng. J. 2021, 424, 130296. [Google Scholar] [CrossRef]
- Mohammadi, M.; Rezaei, A.; Khazaei, A.; Shu, X.; Zheng, H. Targeted Development of Sustainable Green Catalysts for Oxidation of Alcohols via Tungstate-Decorated Multifunctional Amphiphilic Carbon Quantum Dots. ACS Appl. Mater. Interfaces 2019, 11, 43796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, A.; Shi, G.; Wang, Z.; Rao, Z.; Xiao, W.; Xie, X.; Sun, J. Carbon quantum dots-TiO2 nanocomposite as an efficient photocatalyst for the photodegradation of aromatic ring-containing mixed VOCs: An experimental and DFT studies of adsorption and electronic structure of the interface. J. Hazard. Mater. 2021, 401. [Google Scholar] [CrossRef] [PubMed]
- Anju; Rais, A.; Rawat, K.; Prasad, T.; Bohidar, H.B. Boron-doped carbon quantum dots: A ‘turn-off’ fluorescent probe for dopamine detection. Nanotechnology 2020, 32, 022501. [Google Scholar] [CrossRef]
- Lisa John, V.; Joy, F.; Jose Kollannoor, A.; Joseph, K.; Nair, Y.; Vinod, T.P. Amine functionalized carbon quantum dots from paper precursors for selective binding and fluorescent labelling applications. J. Colloid Interface Sci. 2022, 617, 730–744. [Google Scholar] [CrossRef]
- Song, S.; Wu, K.; Wu, H.; Guo, J.; Zhang, L. Multi-shelled ZnO decorated with nitrogen and phosphorus co-doped carbon quantum dots: Synthesis and enhanced photodegradation activity of methylene blue in aqueous solutions. RSC Adv. 2019, 9, 7362–7374. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Li, X.; Luo, M.; Chen, M.; Chen, W.; Yang, P.; Zhou, X. Synthesis of carbon dots with high photocatalytic reactivity by tailoring heteroatom doping. J. Colloid Interface Sci. 2022, 605, 330–341. [Google Scholar] [CrossRef]
- Dong, Y.; Han, Q.; Hu, Q.; Xu, C.; Dong, C.; Peng, Y.; Ding, Y.; Lan, Y. Carbon quantum dots enriching molecular nickel polyoxometalate over CdS semiconductor for photocatalytic water splitting. Appl. Catal. B Environ. 2021, 293, 120214. [Google Scholar] [CrossRef]
- Athulya, M.; John, B.K.; Chacko, A.R.; Mohan, C.; Mathew, B. A Review on Carbon Quantum Dot Based Semiconductor Photocatalysts for the Abatement of Refractory Pollutants. Chem. Phys. Chem 2022, 23, e202100873. [Google Scholar] [CrossRef]
- Teng, M.; Shi, J.; Qi, H.; Shi, C.; Wang, W.; Kang, F.; Eqi, M.; Huang, Z. Effective enhancement of electron migration and photocatalytic performance of nitrogen-rich carbon nitride by constructing fungal carbon dot/molybdenum disulfide cocatalytic system. J. Colloid Interface Sci. 2022, 609, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, Y.; Zhuang, J.; Li, Y.; Jia, L. High temperature hydrothermal etching of g-C3N4 for synthesis of N doped carbon quantum dots-supported CdS photocatalyst to enhance visible light driven hydrogen generation. Mol. Catal. 2022, 517, 111900. [Google Scholar] [CrossRef]
- Bilgic, A. Novel BODIPY-based fluorescent Lycopodium clavatum sporopollenin microcapsules for detection and removal of Cu(II) ions. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127658. [Google Scholar] [CrossRef]
- Bilgic, A. Fabrication of monoBODIPY-functionalized Fe3O4@SiO2@TiO2 nanoparticles for the photocatalytic degradation of rhodamine B under UV irradiation and the detection and removal of Cu(II) ions in aqueous solutions. J. Alloys Compd. 2022, 899, 163360. [Google Scholar] [CrossRef]
- Bilgic, A.; Cimen, A.; Kursunlu, A.N. A novel biosorbent functionalized pillar [5]arene: Synthesis, characterization and effective biosorption of Cr(VI). Sci. Total Environ. 2023, 857, 159312. [Google Scholar] [CrossRef]
- Liu, Q.; Duan, Y.; Zhao, Q.; Pan, F.; Zhang, B.; Zhang, J. Direct Synthesis of Nitrogen-Doped Carbon Nanosheets with High Surface Area and Excellent Oxygen Reduction Performance. Langmuir 2014, 30, 8238–8245. [Google Scholar] [CrossRef]
- Sing, K.S.W. Adsorption methods for the characterization of porous materials. Adv. Colloid Interface Sci. 1998, 76–77, 3–11. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, L.; Li, S.; Pan, D. Aqueous synthesis of glutathione-capped Cu+ and Ag+-doped ZnxCd1−xS quantum dots with full color emission. J. Mater. Chem. C 2013, 1, 751–756. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Zhao, X.; Xu, H.; Wang, Z.; Zhang, X.; Su, Z. Integration of Carbon Dots on Nanoflower Structured ZnCdS as a Cocatalyst for Photocatalytic Degradation. Materials 2023, 16, 366. https://doi.org/10.3390/ma16010366
Zhou J, Zhao X, Xu H, Wang Z, Zhang X, Su Z. Integration of Carbon Dots on Nanoflower Structured ZnCdS as a Cocatalyst for Photocatalytic Degradation. Materials. 2023; 16(1):366. https://doi.org/10.3390/ma16010366
Chicago/Turabian StyleZhou, Jie, Xin Zhao, Haoming Xu, Zhichao Wang, Xiaoyuan Zhang, and Zhiqiang Su. 2023. "Integration of Carbon Dots on Nanoflower Structured ZnCdS as a Cocatalyst for Photocatalytic Degradation" Materials 16, no. 1: 366. https://doi.org/10.3390/ma16010366
APA StyleZhou, J., Zhao, X., Xu, H., Wang, Z., Zhang, X., & Su, Z. (2023). Integration of Carbon Dots on Nanoflower Structured ZnCdS as a Cocatalyst for Photocatalytic Degradation. Materials, 16(1), 366. https://doi.org/10.3390/ma16010366