Research Progress of Ba(Zn1/3Nb2/3)O3 Microwave Dielectric Ceramics: A Review
Abstract
:1. Introduction
2. Structure and Properties of Ba(Zn1/3Nb2/3)O3
3. Approaches to Fabricate BZN Ceramics
3.1. Solid-State Ceramic Route
3.2. Coprecipitation Method
3.3. Citrate Gel Method
3.4. Spray Pyrolysis Method
3.5. Inverse Microemulsion Method
4. Performance Modification of BZN Ceramics
4.1. A-Site Ion Doping
4.2. B-Site Ion Doping
4.3. Oxide Doping
4.4. Other Research Methods
5. Problems and Solutions in Improving the Performance of BZN Ceramics
5.1. Problems in Improving the Performance of BZN Ceramics
5.2. Solutions in Improving the Performance of BZN Ceramics
- (1)
- Raw materials and preparation conditions
- (2)
- Non-stoichiometric ratio
- (3)
- Secondary phase and microstructure
- (4)
- Cation ordering degree
- (5)
- ion valence state
6. Application of BZN Ceramics
7. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Desu, S.B.; O’bryan, H.M. Microwave loss quality of BaZn13Ta2/3O3 ceramics. J. Am. Ceram. Soc. 1985, 68, 546–551. [Google Scholar] [CrossRef]
- Reaney, I.M.; Iddles, D. Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks. J. Am. Ceram. Soc. 2006, 89, 2063–2072. [Google Scholar] [CrossRef]
- Mori, K.; Ogawa, H.; Kan, A.; Ohsato, H. Microwave dielectric property–microstructure relationships in Y2Ba(Cu1−xMgx)O5 solid solutions. J. Eur. Ceram. Soc. 2004, 24, 1749–1753. [Google Scholar] [CrossRef]
- Cho, S.Y.; Seo, M.K.; Hong, K.S.; Park, S.J.; Kim, I.T. Influence of ZnO evaporation on the microwave dielectric properties of La(Zn12Ti12)O3. Mater. Res. Bull. 1997, 32, 725–735. [Google Scholar] [CrossRef]
- Ichinose, N.; Amada, H. Preparation and microwave dielectric properties of the BaO·(Sm1−xLax)2O3· 5TiO2 ceramic system. J. Eur. Ceram. Soc. 2001, 21, 2751–2753. [Google Scholar] [CrossRef]
- Jawahar, I.N.; Santha, N.I.; Sebastian, M.T.; Pezholil, M. Microwave dielectric properties of MO-La2O3-TiO2 (M = Ca, Sr, Ba) ceramics. J. Mater. Res. 2002, 17, 3084–3089. [Google Scholar] [CrossRef]
- Kawashima, S.; Nishida, M.; Ueda, I.; Ouchi, H. Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies. J. Am. Ceram. Soc. 1983, 66, 421–423. [Google Scholar] [CrossRef]
- Reaney, I.M.; Wise, P.L.; Qazi, I.; Miller, C.A. Ordering and quality factor in 0.95BaZn1/3Ta2/3O3-0.05SrGa1/2Ta1/2O3 production resonators. J. Eur. Ceram. Soc. 2003, 23, 3021–3034. [Google Scholar] [CrossRef]
- Wu, H.; Davies, P.K. Influence of Non-Stoichiometry on the Structure and Properties of Ba(Zn1/3Nb2/3)O3 Microwave Dielectrics: I. Substitution of Ba3W2O9. J. Am. Ceram. Soc. 2006, 89, 2239–2249. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Davies, P.K. Influence of Non-Stoichiometry on the Structure and Properties of Ba(Zn1/3Nb2/3)O3 Microwave Dielectrics: II. Compositional Variations in Pure BZN. J. Am. Ceram. Soc. 2006, 89, 2250–2263. [Google Scholar] [CrossRef]
- Noh, S.Y.; Yoo, M.J.; Nahm, S.; Choi, C.H.; Park, H.M.; Lee, H.J. Effect of Structural Changes on the Microwave Dielectric Properties of Ba(Zn1/3Nb2/3)O3 Ceramics. Jpn. J. Appl. Phys. 2002, 41, 2978–2981. [Google Scholar] [CrossRef]
- Ahn, C.W.; Jang, H.J.; Nahm, S.; Park, H.M.; Lee, H.J. Effects of microstructure on the microwave dielectric properties of Ba(Co1/3Nb2/3)O3 and (1-x)Ba(Co1/3Nb2/3)O3-xBa(Zn1/3Nb2/3)O3 ceramics. J. Eur. Ceram. Soc. 2003, 23, 2473–2478. [Google Scholar] [CrossRef]
- Azough, F.; Leach, C.; Freer, R. Effect of CeO2 on the sintering behaviour, cation order and properties of Ba3Co0.7Zn0.3Nb2O9 ceramics. J. Eur. Ceram. Soc. 2006, 26, 1883–1887. [Google Scholar] [CrossRef]
- Itaalit, B.; Mouyane, M.; Bernard, J.; Womes, M.; Hpuivet, D. Effect of Post-Annealing on the Microstructure and Microwave Dielectric Properties of Ba(Co0.7Zn0.3)1/3Nb2/3O3 Ceramics. Appl. Sci. 2016, 6, 2. [Google Scholar] [CrossRef]
- Barwick, M.; Azough, F.; Freer, R. Structure and dielectric properties of perovskite ceramics in the system Ba(Ni1/3Nb2/3)O3-Ba(Zn1/3Nb2/3)O3. J. Eur. Ceram. Soc. 2006, 26, 1767–1773. [Google Scholar] [CrossRef]
- Endo, K.; Fujimoto, K.; Murakawa, K. Dielectric Properties of Ceramics in Ba(Co1/3Nb2/3)O3-Ba(Zn1/3Nb2/3)O3 Solid Solution. J. Am. Ceram. Soc. 1987, 70, 215–218. [Google Scholar] [CrossRef]
- Moreira, R.L.; Matinaga, F.M.; Dias, A.; Dias, A. Raman-spectroscopic evaluation of the long-range order in Ba(B′1/3B″2/3)O3 ceramics. Appl. Phys. Lett. 2001, 78, 428–430. [Google Scholar] [CrossRef]
- Shi, F. Influence of BaZrO3, MnCO3 additives on dielectric properties and microstructure of Ba(Zn1/3Nb2/3)O3 ceramics and Ba(Zn1/3Nb2/3)O3-Sr(Zn1/3Nb2/3)O3 solid solutions. Inorg. Mater. 2010, 46, 85–90. [Google Scholar] [CrossRef]
- Nomura, S. Ceramics for microwave dielectric resonator. Ferroelectrics 1983, 49, 61–70. [Google Scholar] [CrossRef]
- Shimada, T. Far-infrared reflection and microwave properties of Ba([Mg1−xZnx]1/3,Ta2/3)O3 ceramics. J. Eur. Ceram. Soc. 2004, 24, 1799–1803. [Google Scholar] [CrossRef]
- Azough, F.; Leach, C.; Freer, R. Effect of nonstoichiometry on the structure and microwave dielectric properties of Ba(Co1/3Nb2/3)O3 ceramics. J. Eur. Ceram. Soc. 2006, 26, 2877–2884. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, J.; Wang, L.; Fu, Z.; Zhang, Q. Effects of sintering process on microstructure and microwave dielectric properties of Ba(Co1/3Nb2/3)O3 ceramics. Electron. Mater. Lett. 2014, 10, 1121–1125. [Google Scholar] [CrossRef]
- Hsu, C.S.; Huang, C.L.; Ha, L.S. Microwave characteristics of CuO-doped Ba(Ni1/3Nb2/3)O3 dielectric resonators. J. Mater. Sci. 2003, 22, 209–212. [Google Scholar] [CrossRef]
- Tamura, H.; Konoike, T.; Sakabe, Y.; Wakino, K. Improved high-Q dielectric resonator with complex perovskite structure. J. Am. Ceram. Soc. 1984, 67, c59–c61. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, B.; Wang, L. Effects of MnO2 addition on quality factor of Ba(Co0.7Zn0.3)1/3Nb2/3O3 microwave dielectric ceramics. Mater. Lett. 2015, 141, 272–274. [Google Scholar] [CrossRef]
- Huang, C.L.; Hsu, C.S.; Liu, S.J. Dielectric properties of 0.95Ba(Zn1/3Nb2/3)O3–0.05BaZrO3 ceramics at microwave frequency. Mater. Lett. 2003, 57, 3602–3605. [Google Scholar] [CrossRef]
- Ma, P.P.; Yi, L.; Liu, X.Q. Effects of Postdensification Annealing upon Microstructures and Microwave Dielectric Characteristics in Ba((Co0.6−x/2Zn0.4−x/2Mgx)1/3Nb2/3)O3 Ceramics. J. Am. Ceram. Soc. 2013, 96, 3417–3424. [Google Scholar] [CrossRef]
- Azough, F.; Leach, C.; Freer, R. Effect of Cation Order on Microwave Dielectric Properties of Ba(Zn1/3Nb2/3)O3 Ceramics. Key Eng. Mater. 2004, 264, 1153–1156. [Google Scholar] [CrossRef]
- Pradhan, S.D.; Sathaye, S.D.; Patil, K.R.; Mitra, A. Low temperature synthesis of stoichiometric lead zirconate by coprecipitation in non-aqueous medium. Mater. Lett. 2001, 48, 351–355. [Google Scholar] [CrossRef]
- Daigle, A.; Dupre, E.; Geiler, A.; Chen, Y.; Parimi, P.V.; Vittoria, C.; Harris, V.G. Preparation and Characterization of Pure-Phase Co2Y Ferrite Powders via a Scalable Aqueous Coprecipitation Method. J. Am. Ceram. Soc. 2010, 93, 2994–2997. [Google Scholar] [CrossRef]
- Mergen, A.; Sert, D. Production of Ba(Zn1/3Nb2/3)O3 ceramic by coprecipitation. Mater. Charact. 2012, 63, 63–69. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.C.; Fu, B.J.; Hong, M.; Xiang, M.Q.; Liu, Z.A.; Liu, H.; Liu, S.Y. Effects of pH on the crystal structure, morphology and microwave dielectric properties of Bi12TiO20 ceramics synthesized by citrate sol–gel method. J. Mater. Sci. Mater. Electron. 2015, 26, 3179–3185. [Google Scholar] [CrossRef]
- Karen, P.; Kjekshus, A. Citrate-Gel Syntheses in the Y(O)-Ba(O)-Cu(O) System. J. Am. Ceram. Soc. 1994, 77, 547–552. [Google Scholar] [CrossRef]
- Sert, D.; Mergen, A. Production of nanoscale Ba(Zn1/3Nb2/3)O3 microwave dielectric ceramics by polymerised complex method. J. Alloys Compd. 2009, 482, 396–399. [Google Scholar] [CrossRef] [Green Version]
- Yamada, H.; Okawa, T.; Ogihara, T.; Ogata, N. Synthesis and Dielectric Properties of Microwave Dielectric Powders by Spray Pyrolysis. J. Appl. Phys. 2006, 45, 7475–7478. [Google Scholar] [CrossRef]
- Cho, J.S.; Rhee, S.H. Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of a calcium phosphate solution containing polyethylene glycol. J. Eur. Ceram. Soc. 2013, 33, 233–241. [Google Scholar] [CrossRef]
- Liang, M.H.; Hu, C.T.; Chang, H.Y.; Lin, I.N. Ba(Zn1/3Nb2/3)O3 ceramics synthesized by spray pyrolysis technique. Ferroelectrics 1999, 231, 243–248. [Google Scholar] [CrossRef]
- Lim, G.K.; Wang, J.; Ng, S.C.; Gan, L.M. Processing of fine hydroxyapatite powders via an inverse microemulsion route. Mater. Lett. 1996, 28, 431–436. [Google Scholar] [CrossRef]
- Lee, Y.C.; Kuo, M.C.; Liu, K.S.; Lin, I.N. Microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 prepared by inverse-microemulsion process. Ferroelectrics. 2001, 262, 299–304. [Google Scholar] [CrossRef]
- Liu, D.; Chen, X.; Hu, X. Microwave dielectric ceramics in (Ca1−xBax)(Zn1/3Nb2/3)O3 system. Mater. Lett. 2007, 61, 1166–1169. [Google Scholar] [CrossRef]
- Ikawa, H.; Takemoto, M. Products and microwave dielectric properties of ceramics with nominal compositions (Ba1−xCax)(B1/2B′1/2)O3 (B = Y3+, Nd3+, Gd3+; B′ = Nb5+, Ta5+). Mater. Chem. Phys. 2003, 79, 222–225. [Google Scholar] [CrossRef]
- Liou, Y.C.; Chen, J.H.; Wang, H.W.; Liu, C.Y. Synthesis of (BaxSr1−x)(Zn1/3Nb2/3)O3 ceramics by reaction-sintering process and microstructure. Mater. Res. Bull. 2006, 41, 455–460. [Google Scholar] [CrossRef]
- Lin, I.N.; Chia, C.T.; Liu, H.L.; Cheng, H.F.; Freer, R.; Barwick, M.; Azough, F. Intrinsic dielectric and spectroscopic behavior of perovskite Ba(Ni1/3Nb2/3)O3-Ba(Zn1/3Nb2/3)O3 microwave dielectric ceramics. J. Appl. Phys. 2007, 102, 044112–1-044112-7. [Google Scholar] [CrossRef]
- Xiong, Z.; Yang, C.; Tang, B.; Fang, Z.; Chen, H.; Zhang, S. Structure-property relationships of perovskite-structured Ca0.61Nd0.26Ti1−x(Cr0.5Nb0.5)xO3 ceramics. Ceram. Int. 2018, 44, 7384–7392. [Google Scholar] [CrossRef]
- Qasrawi, A.F.; Sahin, E.İ.; Abed, T.Y.; Emek, M. Structural and Dielectric Properties of Ba1−xLax(Zn1/3Nb2/3)O3 Solid Solutions. Phys. status solidi B. 2021, 258, 2000419–2000436. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.X.; Li, J.; Yu, G.L.; Zuo, L.; Zhang, H.W. Microwave dielectric properties and applications of Ba(Zn1/3Nb2/3)O3–Ca(Zn1/3Nb2/3)O3 composite ceramics by one-step synthesis method. J. Mater. Sci. Mater. Electron. 2014, 25, 4720–4724. [Google Scholar] [CrossRef]
- Barber, D.J.; Moulding, K.M.; Zhou, J.; Li, M. Structural order in Ba(Zn1/3Ta2/3)O3, Ba(Zn1/3Nb2/3)O3 and Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics. J. Mater. Sci. 1997, 32, 1531–1544. [Google Scholar] [CrossRef]
- Mergen, A.; Korkmaz, E. Effect of In, Ce and Bi dopings on sintering and dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. J. Eur. Ceram. Soc. 2011, 31, 2649–2655. [Google Scholar] [CrossRef]
- Ioachim, A.; Toacsan, M.I.; Banciu, M.G. Effect of the sintering temperature on the Ba(Zn1/3Ta2/3)O3 dielectric properties. J. Eur. Ceram. Soc. 2007, 27, 1117–1122. [Google Scholar] [CrossRef]
- Qasrawi, A.F.; Sahin, E.İ.; Emek, M.; Kartal, M.; Kargin, S. Structural and dielectric performance of the Ba(Zn1/3Nb2/3−xSbx)O3 perovskite ceramics. Mater. Res. Express 2019, 6, 095095. [Google Scholar] [CrossRef]
- Suchanicz, J.; Konieczny, K.; Faszczowy, I.; Karpierz, M.; Lewczuk, U.; Urban, B.; Klimkowski, G.; Antonova, M.; Sternberg, A. Sb Effect on Structural, Dielectric, and Ferroelectric Properties of Na0.5K0.5NbO3 Ceramics. Ferroelectrics 2015, 479, 8–14. [Google Scholar] [CrossRef]
- Li, J.Z.; Xing, C.; Qiao, H.Y.; Chen, H.L.; Yang, J.; Dong, H.H.; Shi, F. Crystal structure characteristics, dielectric loss, and vibrational spectra of Zn-rich non-stoichiometric Ba[(Zn1/3Nb2/3)1−xZnx]O3 ceramics. Mater. Res. Express 2017, 4, 075910–075926. [Google Scholar] [CrossRef]
- Sun, J.S.; Yu, J.J.; You, J.C.; Wei, C.C. Microwave dielectric properties of Ba(SnxZn(1−x)/3Nb(1−x)2/3)O3 (0 ≤ x ≤ 0.32) ceramics. J. Mater. Sci. 1993, 28, 2163–2168. [Google Scholar] [CrossRef]
- Kim, M.H.; Jeong, Y.H.; Nahm, S.; Kim, H.T.; Lee, H.J. Effect of B2O3 and CuO additives on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. J. Eur. Ceram. Soc. 2006, 26, 2139–2142. [Google Scholar] [CrossRef]
- Kim, M.H.; Lim, J.B.; Kim, J.C.; Nahm, S.; Paik, J.H.; Kim, J.H.; Park, K.S. Synthesis of BaCu(B2O5) Ceramics and their Effect on the Sintering Temperature and Microwave Dielectric Properties of Ba(Zn1/3Nb2/3)O3 Ceramics. J. Am. Ceram. Soc. 2006, 89, 3124–3128. [Google Scholar] [CrossRef]
- Koga, E.; Yanagishi, Y.; Moriwake, H.; Kakimoto, K.; Ohsato, H. Order-disorder transition and its effect on microwave quality factor Q in Ba(Zn1/3Nb2/3)O3 system. J. Electroceram. 2006, 17, 375–379. [Google Scholar] [CrossRef]
- Hughes, H.; Azough, F.; Freer, R.; Iddles, D. Development of surface phases in Ba(Zn1/3Nb2/3)O3-Ba(Ga1/2Ta1/2)O3 microwave dielectric ceramics. J. Eur. Ceram. Soc. 2005, 25, 2755–2758. [Google Scholar] [CrossRef]
- Roulland, F.; Marinel, S. Ba(Zn1/3Nb2/3)O3 sintering temperature lowering for silver co-sintering applications. Ceram. Int. 2006, 32, 377–383. [Google Scholar] [CrossRef]
- Belous, A.G.; Ovchar, O.V.; Kramarenko, O.V.; Bezjak, J.; Jancar, B.; Suvorov, D.; Annino, G. Low-Loss Microwave Ceramics Based on Non-Stoichiometric Perovskites Ba(Co1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3. Ferroelectrics 2008, 367, 149–162. [Google Scholar] [CrossRef]
- Fu, M.S.; Liu, X.Q.; Chen, X.M. Effects of Mg Substitution on Microstructures and Microwave Dielectric Properties of Ba(Zn1/3Nb2/3)O3 Perovskite Ceramics. J. Am. Ceram. Soc. 2010, 93, 787–795. [Google Scholar] [CrossRef]
- Xie, W.T.; Jiang, Q.X.; Cao, Q.L.; Zhou, H.Q.; Ren, L.C.; Luo, X.F. Microwave dielectric properties of (1-x)ZnNb2O6-xBa(Zn1/3Nb2/3)O3 compound ceramic with near zero temperature coefficient. J. Mater. Sci. Mater. Electron. 2018, 29, 2170–2174. [Google Scholar] [CrossRef]
- Nedelcu, L.; Geambasu, C.D.; Enculescu, M.; Banciu, M.G. Intrinsic Dielectric Loss in Zr0.8Sn0.2TiO4 Ceramics Investigated by Terahertz Time Domain Spectroscopy. Materials 2021, 14, 216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.X.; Li, J.B.; Cao, J.; Zhai, H.Z.; Zhang, B. Preparation, microstructure and microwave dielectric properties of ZrxTi1−xO4 (x = 0.40–0.60) ceramics. J. Eur. Ceram. Soc. 2001, 21, 2931–2936. [Google Scholar] [CrossRef]
- Shih, C.F.; Li, W.M.; Tung, K.S.; Hsu, W.D. Low-Loss Microwave Dielectric Material Based on Magnesium Titanate. J. Am. Ceram. Soc. 2010, 93, 2448–2451. [Google Scholar] [CrossRef]
- Lee, C.T.; Lin, Y.C.; Huang, C.Y.; Su, C.Y.; Hu, C.L. Cation ordering and dielectric characteristics in barium zinc niobate. J. Am. Ceram. Soc. 2007, 90, 483–489. [Google Scholar] [CrossRef]
- Scott, R.I.; Thomas, M.; Hampson, C. Development of low cost, high performance Ba(Zn1/3Nb2/3)O3 based materials for microwave resonator applications. J. Eur. Ceram. Soc. 2003, 23, 2467–2471. [Google Scholar] [CrossRef]
- Weng, M.H.; Liauh, C.T.; Lin, S.M.; Wang, H.H.; Yang, R.Y. Sintering Behaviors, Microstructure, and Microwave Dielectric Properties of CaTiO3–LaAlO3 Ceramics Using CuO/B2O3 Additions. Materials 2019, 12, 4187. [Google Scholar] [CrossRef] [Green Version]
- Durilin, D.A.; Ovchar, O.V.; Belous, A.G. Effect of nonstoichiometry on the structure and microwave dielectric properties of Ba1−x(Zn1/2W1/2)O3−x and Ba(Zn1/2−yW1/2)O3−y/2. Inorg. Mater. 2011, 47, 313–316. [Google Scholar] [CrossRef]
- Belous, A.G.; Ovchar, O.V.; Kramarenko, A.V.; Mishchuk, D.O.; Jancar, B.; Bezjak, J.; Suvorov, D. Effect of nonstoichiometry on the structure and microwave dielectric properties of cobalt metaniobate. Inorg. Mater. 2006, 42, 1369–1373. [Google Scholar] [CrossRef]
- Ichinose, N.; Shimada, T. Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg, Zn]1/3Ta2/3)O3 systems. J. Eur. Ceram. Soc. 2006, 26, 1755–1759. [Google Scholar] [CrossRef]
- Kim, E.S.; Yoon, K.H. Effect of nickel on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3. J. Mater. Sci. 1994, 29, 830–834. [Google Scholar] [CrossRef]
- Huang, C.L.; Weng, M.H.; Chen, H.L. Effects of additives on microstructures and microwave dielectric properties of (Zr, Sn)TiO4 ceramics. Mater. Chem. Phys. 2001, 71, 17–22. [Google Scholar] [CrossRef]
- Jancar, B.; Suvorov, D.; Valant, M.; Drazic, G. Characterization of CaTiO3-NdAlO3 dielectric ceramics. J. Eur. Ceram. Soc. 2003, 23, 1391–1400. [Google Scholar] [CrossRef]
- Yang, S.; Liang, B.; Liu, C.; Liu, J.; Fang, C.; Ai, Y. Microwave Sintering and Microwave Dielectric Properties of (1–x)Ca0.61La0.26TiO3-xNd(Mg0.5Ti0.5)O3 Ceramics. Materials 2021, 14, 438. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.C.; Tsai, D.S.; Lin, I.N.; Steeds, J. Microstructural defects in Ba(Mg1/3Ta2/3)O3 microwave dielectric materials. Mater. Chem. Phys. 2003, 79, 218–221. [Google Scholar] [CrossRef]
- Yang, X.Y.; Wu, H.Y.; Wang, X.H.; Luo, Y.G.; Li, L.T. Two-step sintering: An approach to prepare Ba(Zn1/3Nb2/3)O3 ceramics with high degree of cation ordering. J. Alloys Compd. 2017, 723, 930–935. [Google Scholar] [CrossRef]
- Templeton, A.; Wang, X.; Penn, S.J.; Webb, S.J.; Cohen, L.F.; Alford, N.M. Microwave dielectric loss of titanium oxide. J. Am. Ceram. Soc. 2000, 83, 95–100. [Google Scholar] [CrossRef]
- Wakino, K.; Minai, K.; Tamura, H. Microwave Characteristics of (Zr, Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators. J. Am. Ceram. Soc. 1984, 67, 278–281. [Google Scholar] [CrossRef]
- Parida, S.; Rout, S.K.; Subramanian, V.; Barhai, P.K.; Gupta, N.; Gupta, V.R. Structural, microwave dielectric properties and dielectric resonator antenna studies of Sr(ZrxTi1−x)O3 ceramics. J. Alloys Compd. 2012, 528, 126–134. [Google Scholar] [CrossRef]
- Mukherjee, B.; Patel, P.; Mukherjee, J. A review of the recent advances in dielectric resonator antennas. J. Electromagn. Waves Appl. 2020, 34, 1095–1158. [Google Scholar] [CrossRef]
- Dash, S.K.K.; Khan, T.; Antar, Y.M.M. A state-of-art review on performance improvement of dielectric resonator antennas. Int. J. RF Microwave Comput. Aided Eng. 2018, 28, 21270–21288. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.M. Adhesive-Bonded Ca(Mg1/3Nb2/3)O3/Ba(Zn1/3Nb2/3)O3 Layered Dielectric Resonators with Tunable Temperature Coefficient of Resonant Frequency. J. Am. Ceram. Soc. 2006, 89, 544–549. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.M. Effects of stacking scheme on microwave dielectric characteristics of Ca(Mg1/3Nb2/3)O3-Ba(Zn1/3Nb2/3)O3 layered dielectric resonator. J. Am. Ceram. Soc. 2006, 89, 2514–2520. [Google Scholar] [CrossRef]
- Lim, S.K.; Lee, H.Y.; Kim, J.C.; An, C. The design of a temperature-stable stepped-impedance resonator using composite ceramic materials. IEEE Microw. Guided Wave Lett. 1999, 9, 143–144. [Google Scholar] [CrossRef]
- Ren, J.; Yang, P.; Peng, Z.; Fu, X. Novel Al2Mo3O12-PTFE composites for microwave dielectric substrates. Ceram. Int. 2021, 47, 20867–20874. [Google Scholar] [CrossRef]
- Wu, X.G.; Wang, H.; Chen, Y.H.; Zhou, D. Synthesis and Microwave Dielectric Properties of Zn3B2O6 Ceramics for Substrate Application. J. Am. Ceram. Soc. 2012, 95, 1793–1795. [Google Scholar] [CrossRef]
- Ni, L.; Li, L.; Du, M.; Zhan, Y. Wide temperature stable Ba(MgxTa2/3)O3 microwave dielectric ceramics with ultra-high-Q applied for 5G dielectric filter. Ceram. Int. 2021, 47, 1034–1039. [Google Scholar] [CrossRef]
- Wang, C.; Zaki, K.A. Dielectric resonators and filters. IEEE Microw. Mag. 2007, 8, 115–127. [Google Scholar] [CrossRef]
- Lin, L.L.; Lin, C.I.; Kao, T.H.; Huang, M.C. Low-Temperature Metallization and Laser Trimming Process for Microwave Dielectric Ceramic Filters. Materials 2021, 14, 7519. [Google Scholar] [CrossRef]
- Zhang, R.; Mansour, R.R. Dual-Band Dielectric-Resonator Filters. IEEE Trans. Microw. Theory Tech. 2009, 57, 1760–1766. [Google Scholar] [CrossRef]
- Hunter, I.C.; Billonet, L.; Jarry, B.; Guillon, P. Microwave filters-applications and technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 794–805. [Google Scholar] [CrossRef]
- Huang, F.; Fouladi; Mansour, R.R. High-Q Tunable Dielectric Resonator Filters Using MEMS Technology. IEEE Trans. Microw. Theory Tech. 2011, 59, 3401–3409. [Google Scholar] [CrossRef]
- Lim, S.K.; Kim, D.W.; Lee, H.Y.; An, C. A bandpass filter using dielectric coaxial resonators with a temperature-stable stepped-impedance structure. Microw. Opt. Technol. Lett. 2002, 35, 508–510. [Google Scholar] [CrossRef]
- Sung, H.M.; Chen, C.J.; Wang, L.J.; Ko, W.S. The characteristics of low temperature co-fired multilayer chip LC filters. IEEE Trans. Magn. 1998, 34, 1363–1365. [Google Scholar] [CrossRef]
- Joshi, R.; Hussin, E.F.N.M.; Soh, P.J.; Jamlos, M.F.; Lago, H.; Al-Hadi, A.A.; Podilchak, S.K. Dual-Band, Dual-Sense Textile Antenna With AMC Backing for Localization Using GPS and WBAN/WLAN. IEEE Access 2020, 8, 89468–89478. [Google Scholar] [CrossRef]
- Wang, D.; Siame, B.; Zhang, S.; Wang, G.; Ju, X.; Li, J.; Lu, Z.; Vardaxoglou, Y.; Whittow, W.; Cadman, D.; et al. Direct integration of cold sintered, temperature-stable Bi2Mo2O9-K2MoO4 ceramics on printed circuit boards for satellite navigation antennas. J. Eur. Ceram. Soc. 2020, 40, 4029–4034. [Google Scholar] [CrossRef]
Ceramic Composition | Fabrication Method | εr | Q × f (GHz) | τf (ppm/°C) | Reference |
---|---|---|---|---|---|
Ba(Zn1/3Nb2/3)O3 | Solid-state ceramic route | 41 | 86,925 | +31 | [19] |
Ba(Zn1/3Ta2/3)O3 | Solid-state ceramic route | 28 | 168,000 | +0.5 | [7] |
Ba(Mg1/3Nb2/3)O3 | Solid-state ceramic route | 32 | 55,440 | +33 | [19] |
Ba(Mg1/3Ta2/3)O3 | Mixed oxide method | 25 | 250,000 | +2 | [20] |
Ba(Co1/3Nb2/3)O3 | Mixed oxide method | 32 | 66,500 | −10 | [21] |
Ba(Co1/3Ta2/3)O3 | Mixed oxide method | 32.6 | 86,857 | −14 | [22] |
Ba(Ni1/3Nb2/3)O3 | Solid-state ceramic route | 31.2 | 38,000 | −0.2 | [23] |
Ba(Ni1/3Ta2/3)O3 | Solid-state ceramic route | 23 | 49,700 | −18 | [24] |
x | εr | Q × f (GHz) | τf (ppm/°C) | Cell Volume (Å3) | ||
---|---|---|---|---|---|---|
Cubic | Hexagonal | Orthogonal | ||||
0 | 34 | 11,840 | −35 | 240.5637 | ||
0.1 | 36 | 16,170 | −12 | 209.3487 | 240.6796 | |
0.3 | 41 | 3470 | 62 | 207.7826 | 240.2788 | |
0.5 | 47 | 1920 | 128 | 207.3537 | 240.3285 | |
0.7 | 54 | 1480 | 183 | 207.3010 | 237.0761 | |
0.9 | 53 | 300 | 217 | 205.9120 | ||
1.0 | 40 | 29,710 | 23 | 68.8234 |
Relative Density (%) | ||||||
---|---|---|---|---|---|---|
0.2 mol% | 0.5 mol% | 1.0 mol% | 2.0 mol% | 4.0 mol% | Sintering Temperature | |
In | 91.86 | 97.59 | 97.99 | 99.67 | 99.79 | 1300 °C |
Ce | 97.85 | 95.25 | 96.71 | 96.95 | 92.84 | 1400 °C |
Bi | 94.68 | 91.44 | 90.70 | 95.92 | 95.87 | 1250 °C |
Lattice Parameter (Å) | ||||||
---|---|---|---|---|---|---|
0.2 mol% | 0.5 mol% | 1.0 mol% | 2.0 mol% | 4.0 mol% | Sintering Temperature | |
In | 4.0941 | 4.0962 | 4.1008 | 4.1155 | 4.1202 | 1300 °C |
Ce | 4.1369 | 4.1379 | 4.1434 | 4.1437 | 4.1543 | 1400 °C |
Bi | 4.0913 | 4.0893 | 4.0862 | 4.0922 | 4.0935 | 1250 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.; Zhang, Y.; Yi, T. Research Progress of Ba(Zn1/3Nb2/3)O3 Microwave Dielectric Ceramics: A Review. Materials 2023, 16, 423. https://doi.org/10.3390/ma16010423
Peng S, Zhang Y, Yi T. Research Progress of Ba(Zn1/3Nb2/3)O3 Microwave Dielectric Ceramics: A Review. Materials. 2023; 16(1):423. https://doi.org/10.3390/ma16010423
Chicago/Turabian StylePeng, Sen, Yu Zhang, and Tulin Yi. 2023. "Research Progress of Ba(Zn1/3Nb2/3)O3 Microwave Dielectric Ceramics: A Review" Materials 16, no. 1: 423. https://doi.org/10.3390/ma16010423
APA StylePeng, S., Zhang, Y., & Yi, T. (2023). Research Progress of Ba(Zn1/3Nb2/3)O3 Microwave Dielectric Ceramics: A Review. Materials, 16(1), 423. https://doi.org/10.3390/ma16010423