Correlations between Microstructure and Residual Stress of Nanoscale Depth Profiles for TSV-Cu/TiW/SiO2/Si Interfaces after Different Thermal Loading
Abstract
:1. Introduction
2. Preparation of Samples and the ILR Method
2.1. Fabrication of a Micro Cantilever Beam
2.2. ILR Method
- (a)
- The initial deflection δorigin was measured by SEM at the free end of the micro cantilever beam in Section B.
- (b)
- The sublayers were removed, layer by layer, via FIB, from the top of the TSV-Cu to the bottom of the Si substrate in Section A. The thickness of each removed sublayer is in the nanoscale and the minimum thickness is 9 nm. With the decrease in thickness in Section A, the residual stress of the micro cantilever beam was constantly reconstructed, leading to deflection with different curvatures. The remaining thickness (t) in Section A and the corresponding deflection δ(t) in Section B were measured by SEM after removing each sublayer.
- (c)
- The biaxial modulus (Eb) of each sublayer was calculated according to Eb = E/(1 − υ), where υ is the Poisson’s ratio of the sublayer material. Given that ECu = 155.47 GPa, ETiW = 129 GPa, ESiO2 = 72.1 GPa, and ESi = 131 GPa.
3. Results and Analysis
3.1. Failure Modes of the TSV-Cu/TiW/SiO2/Si Interfaces
3.2. Residual Stress Distribution
3.3. Microstructure Analysis
3.4. Influence of the TSV-Cu Microstructure on Failure Modes and Residual Stress
4. Discussion
4.1. Numerical Procedure of the ILR Method
4.2. Influence of the Geometric Error of the Micro Cantilever Beam
4.3. Influence of Material Damage
5. Conclusions
- The residual stresses at the as-fabricated interfaces of TSV-Cu/TiW, TiW/SiO2, and SiO2/Si were −37.59 MPa, −62.17 MPa, and −24.73 MPa, respectively. After thermal cycling or annealing, the residual stresses at the interfaces of TSV-Cu/TiW and TiW/SiO2 ranged from 140 MPa to 300 MPa. However, the residual stress at the interfaces of SiO2/Si was within the range of 10~40 MPa.
- The maximum residual stress inside the fabricated TSV-Cu was 478.54 MPa; it decreased to 216.75 MPa after thermal cycling and was reduced to 90.45 MPa after annealing. The maximum residual stress in the inner TiW was at a considerable level, ranging from 190 MPa to 280 MPa under various thermal loadings. The maximum residual stress of the inner SiO2 was 84.75 MPa after thermal cycling, which was the smallest value compared with that under other thermal conditions. The maximum residual stress in the inner fabricated Si was 321.71 MPa, which decreased to 128 MPa and zero after thermal cycling and annealing, respectively.
- The initial micro voids and cracks at the interfaces of the TSV-Cu/TiW/SiO2/Si were caused by the electroplating process. The micro voids became dense and the micro-cracks propagated to form penetrating cracks after thermal cycling and annealing. In addition, the average grain size of the TSV-Cu was 152 nm as fabricated, then it decreased to 92 nm and was distributed uniformly around the TSV-Cu/TiW interface after thermal cycling. Furthermore, the average grain size enlarged to 363 nm and exhibited fluctuant distribution around the TSV-Cu/TiW interface after annealing.
- Residual stresses were generated and accumulated at the interconnected interfaces during thermal cycling, which increased the KAM value and motivated the recrystallization nucleation of TSV-Cu grains. Thus, many new grain boundaries formed, resulting in a decrease in the grain size and an increase in tensile stress at the TSV-Cu/TiW interface. During annealing, the high annealing temperature and dense micro voids released the residual stress of the inner TSV-Cu, which induced a decrease in the KAM value and the overall stress in the inner TSV-Cu.
- The applicability of the ILR method to measure the nanoscale residual stress gradient of the TSV Cu/TiW/SiO2/Si multilayer interfaces was verified by FEM. It was also confirmed that the geometrical errors of the micro cantilever beam and the adopted Ga+ kinetic energy of FIB were reasonable.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gambino, J.P.; Adderly, S.A.; Knickerbocker, J.U. An overview of through-silicon-via technology and manufacturing challenges. Microelecon. Eng. 2015, 135, 73–106. [Google Scholar] [CrossRef]
- Huang, P.C.; Lee, C.C. Stress impact of the annealing procedure of Cu-Filled TSV packaging on the performance of nano-scaled MOSFETs evaluated by an analytical solution and FEA-Based submodeling technique. Materials 2021, 14, 5226. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Watanabe, N.; Shimamoto, H.; Aoyagi, M.; Kikuchi, K. Stress investigation of annular-trench-isolated TSV by polarized Raman spectroscopy measurement and finite element simulation. Microelectron. Reliab. 2019, 99, 125–131. [Google Scholar] [CrossRef]
- Chan, J.M.; Lee, K.C.; Tan, C.S. Effects of copper migration on the reliability of Through-Silicon Via (TSV). IEEE Trans. Dev. Mater. Relia. 2018, 18, 520–528. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Q.; Sundaram, V.; Tummala, R.R.; Sitaraman, S.K. Failure analysis of through-silicon vias in free-standing wafer under thermal-shock test. Microelectron. Reliab. 2013, 53, 70–78. [Google Scholar] [CrossRef]
- Chen, Y.; Su, W.; Huang, H.-Z.; Lai, P.; Lin, X.-L.; Chen, S. Stress evolution mechanism and thermo-mechanical reliability analysis of copper-filled TSV interposer. Eksploat. I Niezawodn.-Maint. Reliab. 2020, 22, 705–714. [Google Scholar] [CrossRef]
- Okoro, C.; Lau, J.W.; Golshany, F.; Hummler, K.; Obeng, Y.S. A detailed failure analysis examination of the effect of ehermal cycling on Cu TSV Reliability. IEEE Transact. Electro. Dev. 2014, 61, 15–22. [Google Scholar] [CrossRef]
- Lee, H.; Wong, S.S.; Lopatin, S.D. Correlation of stress and texture evolution during self- and thermal annealing of electroplated Cu films. J. Appl. Phys. 2003, 93, 3796–3804. [Google Scholar] [CrossRef]
- Shen, Y.-L.; Ramamurty, U. Constitutive response of passivated copper films to thermal cycling. J. Appl. Phys. 2003, 93, 1806–1812. [Google Scholar] [CrossRef]
- Shen, Y.-L.; Ramamurty, U. Temperature-dependent inelastic response of passivated copper films: Experiments, analyses, and implications. J. Vac. Sci. Technol. B 2003, 21, 1258–1264. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.-K.; Jiang, T.; Lu, K.H.; Im, J.; Son, H.-Y.; Byun, K.-Y.; Huang, R.; Ho, P.S. Characterization of thermal stresses in through-silicon vias for three-dimensional interconnects by bending beam technique. Appl. Phys. Lett. 2012, 100, 041901. [Google Scholar] [CrossRef] [Green Version]
- Kwon, W.S.; Alastair, D.T.; Teo, K.H.; Gao, S.; Ueda, T.; Ishigaki, T.; Kang, K.T.; Yoo, W.S. Stress evolution in surrounding silicon of Cu-filled through-silicon via undergoing thermal annealing by multiwavelength micro-Raman spectroscopy. Appl. Phys. Lett. 2011, 98, 232106. [Google Scholar] [CrossRef]
- Ryu, S.-K.; Zhao, Q.; Hecker, M.; Son, H.-Y.; Byun, K.-Y.; Im, J.; Ho, P.S.; Huang, R. Micro-Raman spectroscopy and analysis of near-surface stresses in silicon around through-silicon vias for three-dimensional interconnects. J. Appl. Phys. 2012, 111, 063513. [Google Scholar] [CrossRef]
- Spinella, L.; Jiang, T.; Tamura, N.; Im, J.-H.; Ho, P.S. Synchrotron X-Ray Microdiffraction Investigation of Scaling Effects on Reliability for Through-Silicon Vias for 3-D Integration. IEEE Trans. Dev. Mater. Relia. 2019, 19, 568–571. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.; Shafiei, F.; Mendoza, B.S.; Lei, M.; Jiang, T.; Ho, P.S.; Downer, M.C. Second-harmonic microscopy of strain fields around through-silicon-vias. Appl. Phys. Lett. 2016, 108, 151602. [Google Scholar] [CrossRef]
- Okoro, C.; Levine, L.E.; Xu, R.; Obeng, Y. Experimental measurement of the effect of copper through-silicon via diameter on stress buildup using synchrotron-based X-ray source. J. Mater. Sci. 2015, 50, 6236–6244. [Google Scholar] [CrossRef]
- Kim, H.; Jeon, H.; Lee, D.-J.; Kim, J.-Y. Surface residual stress in amorphous SiO2 insulating layer on Si substrate near a Cu through-silicon via (TSV) investigated by nanoindentation. Mater. Sci. Semicond. Process. 2021, 135, 106153. [Google Scholar] [CrossRef]
- Chukwudi, O.; Levine, L.E.; Ruqing, X.; Klaus, H.; Obeng, Y.S. Nondestructive measurement of the residual stresses in Copper Through-Silicon Vias using synchrotron-based microbeam X-ray Diffraction. IEEE Transact. Electro. Dev. 2014, 61, 2473–2479. [Google Scholar] [CrossRef]
- Ryu, S.-K.; Jiang, T.; Im, J.; Ho, P.S.; Huang, R. Thermomechanical failure analysis of Through-Silicon Via interface using a shear-lag model with cohesive zone. IEEE Trans. Dev. Mater. Relia. 2014, 14, 318–326. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Z.; En, Y.; Huang, Y.; Qin, F.; An, T. The experimental analysis and the mechanical model for the debonding failure of TSV-Cu/Si interface. Microelectron. Reliab. 2018, 91, 52–66. [Google Scholar] [CrossRef]
- Karmarkar, A.P.; Xu, X.; El Sayed, K.; Guo, W.; Van der Plas, G.; Van Huylenbroeck, S.; Gonzalez, M.; Absil, P.; Beyne, E. Modeling Copper Plastic Deformation and Liner Viscoelastic Flow Effects on Performance and Reliability in Through Silicon Via (TSV) Fabrication Processes. IEEE Trans. Dev. Mater. Relia. 2019, 19, 642–653. [Google Scholar] [CrossRef]
- Wei, W.; Fei, Q.; Tong, A.; Pei, C. Experimental and numerical investigation of mechanical properties of electroplating Copper filled in Through Silicon Vias. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6, 23–30. [Google Scholar] [CrossRef]
- Dixit, P.; Yaofeng, S.; Miao, J.; Pang, J.H.; Chatterjee, R.; Tummala, R.R. Numerical and experimental investigation of thermomechanical deformation in high-aspect-ratio electroplated Through-Silicon Vias. J. Electrochem. Soc. 2008, 155, H981. [Google Scholar] [CrossRef]
- Reisinger, M.; Zalesak, J.; Daniel, R.; Tomberger, M.; Weiss, J.K.; Darbal, A.D.; Petrenec, M.; Zechner, J.; Daumiller, I.; Ecker, W.; et al. Cross-sectional stress distribution in AlxGa1−xN heterostructure on Si (111) substrate characterized by ion beam layer removal method and precession electron diffraction. Mater. Design 2016, 106, 476–481. [Google Scholar] [CrossRef]
- Reisinger, M.; Ostermaier, C.; Tomberger, M.; Zechner, J.; Sartory, B.; Ecker, W.; Daumiller, I.; Keckes, J. Matching in-situ and ex-situ recorded stress gradients in an AlxGa1 − xN Heterostructure: Complementary wafer curvature analyses in time and space. Scripta Mater. 2018, 147, 50–54. [Google Scholar] [CrossRef]
- Treml, R.; Kozic, D.; Zechner, J.; Maeder, X.; Sartory, B.; Gänser, H.P.; Schöngrundner, R.; Michler, J.; Brunner, R.; Kiener, D. High resolution determination of local residual stress gradients in single- and multilayer thin film systems. Acta Mater. 2016, 103, 616–623. [Google Scholar] [CrossRef] [Green Version]
- Massl, S.; Keckes, J.; Pippan, R. A direct method of determining complex depth profiles of residual stresses in thin films on a nanoscale. Acta Mater. 2007, 55, 4835–4844. [Google Scholar] [CrossRef]
- Massl, S.; Keckes, J.; Pippan, R. A new cantilever technique reveals spatial distributions of residual stresses in near-surface structures. Scripta Mater. 2008, 59, 503–506. [Google Scholar] [CrossRef]
- Schöngrundner, R.; Treml, R.; Antretter, T.; Kozic, D.; Ecker, W.; Kiener, D.; Brunner, R. Critical assessment of the determination of residual stress profiles in thin films by means of the ion beam layer removal method. Thin Solid Films 2014, 564, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Hammer, R.; Todt, J.; Keckes, J.; Sartory, B.; Parteder, G. High resolution residual stress gradient characterization in W/TiN-stack on Si (100): Correlating in-plane stress and grain size distributions in W sublayer. Mater. Design 2017, 132, 72–78. [Google Scholar] [CrossRef]
- An, T.; Qin, F.; Chen, S.; Chen, P. The effect of the diffusion creep behavior on the TSV-Cu protrusion morphology during annealing. J. Mater. Sci. Mater. Electron. 2018, 29, 16305–16316. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, L.; Wang, Y.; Guo, F. Mechanism of the Local Cu Protrusion in Cu-Filled Through Silicon Vias Under Heat Treatment. J. Electron. Mater. 2018, 48, 152–158. [Google Scholar] [CrossRef]
- Wu, C.; Huang, R.; Liechti, K.M. Characterizing Interfacial Sliding of Through-Silicon-Via by Nano-Indentation. IEEE Trans. Dev. Mater. Relia. 2017, 17, 355–363. [Google Scholar] [CrossRef]
- Wu, C.; Wei, C.; Li, Y. In Situ Mechanical Characterization of the Mixed-Mode Fracture Strength of the Cu/Si Interface for TSV Structures. Micromachines 2019, 10, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; En, Y.F.; Li, G.Y.; Wang, Z.Z.; Gao, R.; Ma, R.; Zhang, L.X.; Huang, Y. An ion beam layer removal method of determining the residual stress in the as-fabricated TSV-Cu/TiW/SiO2/Si interface on a nanoscale. Microelectro. Reliab. 2020, 112, 113826. [Google Scholar] [CrossRef]
- Rosencwaig, A.; Opsal, J.; Smith, W.L.; Willenborg, D.L. Detection of thermal waves through optical reflectance. Appl. Phys. Lett. 1985, 46, 1013–1015. [Google Scholar] [CrossRef]
- Mariappan, M.; Bea, J.; Fukushima, T.; Ikenaga, E.; Nohira, H.; Koyanagi, M. Improving the barrier ability of Ti in Cu through-silicon vias through vacuum annealing. Jpn. J. Appl. Phys. 2017, 56, 04CC08. [Google Scholar] [CrossRef]
- Lin, P.C.; Chen, H.; Hsieh, H.-C.; Tseng, T.-H.; Lee, H.Y.; Wu, A.T. Co-sputtered Cu (Ti) thin alloy film for formation of Cu diffusion and chip-level bonding. Mater. Chem. Phys. 2018, 211, 17–22. [Google Scholar] [CrossRef]
- Hong, S.J.; Lee, S.; Yang, H.J.; Lee, H.M.; Ko, Y.K.; Hong, H.N.; Soh, H.S.; Kim, C.K.; Yoon, C.S.; Ban, K.S.; et al. Effects of the dissolved oxygen in Ti films on Ti reactions in Cu/Ti/SiO2/Si system upon annealing. Semicond. Sci. Tech. 2004, 19, 1315–1321. [Google Scholar] [CrossRef]
- Uehara, S.; Ito, K.; Kohama, K.; Onishi, T.; Shirai, Y.; Murakami, M. Resistivity Reduction and Adhesion Increase Induced by Surface and Interface Segregation of Ti Atoms in Cu (Ti) Alloy Films on Glass Substrates. Mater. Transact. 2010, 51, 1627–1632. [Google Scholar] [CrossRef]
- Jiang, T.; Im, J.; Huang, R.; Ho, P.S. Through-silicon via stress characteristics and reliability impact on 3D integrated circuits. MRS Bull. 2015, 40, 248–256. [Google Scholar] [CrossRef] [Green Version]
- Chason, E. A kinetic analysis of residual stress evolution in polycrystalline thin films. Thin Solid Film. 2012, 526, 1–14. [Google Scholar] [CrossRef]
- Massl, S.; Köstenbauer, H.; Keckes, J.; Pippan, R. Stress measurement in thin films with the ion beam layer removal method: Influence of experimental errors and parameters. Thin Solid Film. 2008, 516, 8655–8662. [Google Scholar] [CrossRef]
- Mayr, S.G.; Samwer, K. Model for intrinsic stress formation in amorphous thin films. Phys. Rev. Lett. 2001, 87, 036105. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Wang, Y.; Yang, X.; Yao, Y. Microstructure evolution and mechanical behavior of copper through-silicon via structure under thermal cyclic loading. Microelectro. Reliab. 2022, 136, 114730. [Google Scholar] [CrossRef]
- Doyle, P.J.; Benensky, K.M.; Zinkle, S.J. A set of MATLAB routines and associated files for prediction of radiation-enhanced diffusion in ion irradiated materials. Data Brief 2018, 21, 83–85. [Google Scholar] [CrossRef]
Length, l (nm) | Width, w (nm) | Thickness, t (nm) | TSV-Cu (nm) | TiW (nm) | SiO2 (nm) | Si (nm) | |
---|---|---|---|---|---|---|---|
As fabricated | 23,630 | 270 | 400 | 130 | 70 | 50 | 150 |
Thermal cycling | 24,880 | 271 | 474 | 137 | 73 | 59 | 205 |
Annealing | 23,970 | 220 | 528 | 206 | 65 | 52 | 225 |
Sublayer, i | 0–3 | 4 | 5–6 | 7 | 8–9 | 10 | 11–12 |
---|---|---|---|---|---|---|---|
Material | Si | Si/SiO2 | SiO2 | SiO2/TiW | TiW | TiW/Cu | Cu |
Eb–i/GPa | 201.54 | 119.42 | 86.87 | 138.36 | 215.00 | 216.63 | 222.10 |
Sublayer, i | 0–2 | 3 | 4–6 | 7 | 8–9 | 10 | 11–12 |
---|---|---|---|---|---|---|---|
Material | Si | Si/SiO2 | SiO2 | SiO2/TiW | TiW | TiW/Cu | Cu |
Eb–i/GPa | 201.54 | 109.63 | 86.87 | 183.71 | 215.00 | 219.94 | 222.10 |
Sublayer, i | 0 | 1 | 2–3 | 4 | 5–7 | 8 | 9–12 |
---|---|---|---|---|---|---|---|
Material | Si | Si/SiO2 | SiO2 | SiO2/TiW | TiW | TiW/Cu | Cu |
Eb–i/GPa | 201.54 | 97.56 | 86.87 | 200.45 | 215.00 | 218.53 | 222.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Chen, F.; Qin, F.; Chen, S.; Dai, Y. Correlations between Microstructure and Residual Stress of Nanoscale Depth Profiles for TSV-Cu/TiW/SiO2/Si Interfaces after Different Thermal Loading. Materials 2023, 16, 449. https://doi.org/10.3390/ma16010449
Zhang M, Chen F, Qin F, Chen S, Dai Y. Correlations between Microstructure and Residual Stress of Nanoscale Depth Profiles for TSV-Cu/TiW/SiO2/Si Interfaces after Different Thermal Loading. Materials. 2023; 16(1):449. https://doi.org/10.3390/ma16010449
Chicago/Turabian StyleZhang, Min, Fangzhou Chen, Fei Qin, Si Chen, and Yanwei Dai. 2023. "Correlations between Microstructure and Residual Stress of Nanoscale Depth Profiles for TSV-Cu/TiW/SiO2/Si Interfaces after Different Thermal Loading" Materials 16, no. 1: 449. https://doi.org/10.3390/ma16010449
APA StyleZhang, M., Chen, F., Qin, F., Chen, S., & Dai, Y. (2023). Correlations between Microstructure and Residual Stress of Nanoscale Depth Profiles for TSV-Cu/TiW/SiO2/Si Interfaces after Different Thermal Loading. Materials, 16(1), 449. https://doi.org/10.3390/ma16010449